- 4 A smooth sphere, A, has mass 3m and velocity $7\mathbf{i} 8\mathbf{j}$. It collides with a second smooth sphere, B, which has mass m and velocity $2\mathbf{i} + 5\mathbf{j}$. The two spheres have the same radius. After the collision, the velocity of B is $5\mathbf{i} 4\mathbf{j}$.
 - (a) Find the velocity of A after the collision.

(4 marks)

(b) Find the change in momentum of B.

(2 marks)

(c) Find, as a vector, the direction of the line of centres of the spheres during the collision.

Give a reason for your answer.

(2 marks)

Question number	Solution	Marks	Total marks	Comments
and part			mar Ks	
4(a)	Using conservation of momentum	M1		
	$3m\binom{7}{-8} + m\binom{2}{5} = m\binom{5}{-4} + 3m \mathbf{v}$	A1		
	$ \binom{21}{-24} + \binom{2}{5} = \binom{5}{-4} + 3 \mathbf{v} $	M1		
	$3 \mathbf{v} = \begin{pmatrix} 18 \\ -15 \end{pmatrix}$			
	$\mathbf{v} = \begin{pmatrix} 6 \\ -5 \end{pmatrix}$	A1	4	
	Change in momentum =			
	$m \binom{5}{-4} - m \binom{2}{5}$	M1		M1 for $-3m\mathbf{i} + 9m\mathbf{j}$
	$=3m\mathbf{i}-9m\mathbf{j}$	A1	2	sc 1 for 3i – 9j
(c)	Direction is $\mathbf{i} - 3\mathbf{j}$ oe Line of centres is parallel to the change in	B1√		ft from (b)
	momentum	B1	2	
	Total		8	

5 A sphere of mass m, moving on a smooth horizontal surface, hits a smooth vertical wall. Just before it hits the wall, the sphere is moving at an angle of 60° to the wall with velocity u.

The diagram shows the view from above.

The coefficient of restitution between the wall and the sphere is $\frac{3}{4}$.

- (a) Modelling the sphere as a particle, find the angle through which the direction of motion of the sphere is changed. (6 marks)
- (b) The impulse exerted by the wall on the sphere acts on the sphere for 0.05 seconds. Given that $m = 0.3 \,\mathrm{kg}$, and $u = 5 \,\mathrm{m \, s^{-1}}$, find the average impulsive force acting on the sphere. (7 marks)

7 Two smooth spheres, A and B, of equal radius and masses m and M respectively, are moving on a horizontal plane. Sphere A has speed 3u, and sphere B has speed 2u and is approaching sphere A. The spheres collide and the velocities of the spheres before impact make acute angles α and β with the line of centres, as shown in the diagram.

$$\tan \alpha = \frac{3}{4}$$
 and $\tan \beta = \frac{12}{5}$

The coefficient of restitution between the spheres is e.

After the collision, the velocity of B is in the direction of the velocity of A before the impact.

Show that

$$e = \frac{2m + 105M}{103m} \tag{9 marks}$$

			103 <i>m</i>
7	Let v_1 and v_2 be components of velocities of A and B along the line of centres after collision Let v_3 and v_4 be components of velocities of A and B perpendicular to the line of centres after collision Velocities perpendicular to line of centres are unaltered $v_4 = 2u \sin \beta = \frac{24}{13}u$	ВІ	using $\tan \beta = 12/5$
	$3um\cos\alpha - 2uM\cos\beta = mv_1 + Mv_2 $ (1)	M1 A1	using conservation of momentum along line of centres
	$e(3u\cos\alpha + 2u\cos\beta) = v_2 - v_1$	M1 A1	using restitution equation
	$e\left(3.\frac{4}{5} + 2.\frac{5}{13}\right)u = v_2 - v_1$		
	$\frac{206}{65}eu = v_2 - v_1 $ $(m+M)v_2 = \frac{206}{65}meu + \frac{12}{5}um - \frac{10}{13}uM$		from <i>m</i> (2) + (1)
	$=\frac{(206me+156m-50M)u}{65}$		
	$v_2 = \frac{(206me + 156m - 50M)u}{65(m+M)}$	M1 A1	
	$\tan \alpha = \frac{v_4}{v_2} \implies 3v_2 = 4v_4$	MI	since direction at B is now old direction of A
	$\frac{96}{13}u = \frac{3(206me + 156m - 50M)u}{65(m+M)}$ $480m + 480M = 618me + 468m - 150M$		
	$12m + 630M = 618me$ $e = \frac{2m + 105M}{1000}$	Al	
	103m	781	9

7 Two smooth spheres, A and B, have mass m and 2m respectively. Sphere A is moving with a constant velocity of 5 m s⁻¹ when it collides with sphere B, which was at rest. The velocity of A was at an angle of 60° to the line of centres of the sphere when the collision took place. The coefficient of restitution between the two sphere is $\frac{1}{2}$.

- (a) Show that the speed of B after the collision is $\frac{5}{4}$ m s⁻¹.
- (b) Find the speed of A after the collision.

(7 marks) (4 marks)

(0) 1				(Titterius)
7(a)	$5m\cos 60^\circ = m \times v_A \cos \alpha + 2mv_B$	M1		
	$\frac{5}{2} = v_A \cos \alpha + 2v_B$	A1		
	$v_A \cos \alpha - v_B = -\frac{1}{2} (5\cos 60^\circ)$	M1A1		
	$v_A \cos \alpha = v_B - \frac{5}{4}$			
	$\frac{5}{2} = 3v_B - \frac{5}{4}$	M1A1		
	$v_B = \frac{15}{12} = \frac{5}{4}$	A1	7	
(b)	$v_A \sin \alpha = 5\sin 30^\circ = \frac{5\sqrt{3}}{2}$	B1		
	$v_A \cos \alpha = \frac{5}{4} - \frac{5}{4} = 0$ $v_A = \frac{5\sqrt{3}}{2} = 4.33 \text{ m s}^{-1}$	M1		
	$v_A = \frac{5\sqrt{3}}{2} = 4.33 \mathrm{m \ s^{-1}}$	M1A1	4	
	Total		11	