FP1 Calculus Challenge

Challenge 1

Given that $f(x) = x^4 - 1$:

(a) write down the value of f(-1); (1 mark)

(b) show that $f(-1+h) = -4h + 6h^2 - 4h^3 + h^4$; (3 marks)

(c) hence find the value of f'(-1). (2 marks)

Challenge 2

The function f is defined for all real values of x by

$$f(x) = x^3 + x$$

(a) Express f(2 + h) - f(2) in the form

$$ph + qh^2 + rh^3$$

where p, q and r are integers.

(5 marks)

(b) Use your answer to part (a) to find the value of f'(2).

(2 marks)

Challenge 3

For each of the following improper integrals, find the value of the integral **or** explain briefly why it does not have a value:

(a)
$$\int_{2}^{\infty} 8x^{-3} dx;$$
 (3 marks)

(b)
$$\int_{2}^{\infty} (8x^{-3} + 1) \, dx$$
; (1 mark)

(c)
$$\int_{2}^{\infty} 8x^{-3}(x+1) \, dx$$
. (3 marks)

Final Challenge

The diagram shows a part of the curve

$$\frac{x^2}{4} - \frac{y^2}{6} = 1$$

and a chord PQ of the curve, where P lies on the x-axis.

(a) Write down the coordinates of P.

(1 mark)

(b) The gradient of the chord PQ is 2. Find the coordinates of Q.

(7 marks)

