- 2 The complex number z is equal to x + iy, where x and y are real numbers.
 - (a) Given that z^* is the conjugate of z, expand $(1 i)z^*$ in terms of x and y. (2 marks)
 - (b) Given that

$$2(z-1) = (1-i)z^*$$

find the value of the complex number z.

(4 marks)

2(a)	$z^* = x - iy$	M1		
	$(1-i)z^* = x - iy - ix - y$	A1	2	oe; $i^2 = -1$ must be used
(b)	Equating $2(x + iy - 1)$ to above	M1		
	Equating R and I parts	m1		
	Solving sim equations	m1		
	x = 3, y = -1 (so $z = 3 - i$)	A1	4	
	Total		6	

1 (a) Show that
$$(3-i)^2 = 8-6i$$
. (1 mark)

(b) The quadratic equation

$$az^2 + bz + 10i = 0,$$

where a and b are real, has a root 3 - i.

(i) Show that a = 3 and find the value of b. (6 marks)

(ii) Determine the other root of the quadratic equation, giving your answer in the form $p+\mathrm{i}q$. (3 marks)

Q	Solution	Marks	Total	Comments
1(a)	$(3-i)^2 = 9-6i+i^2 = 8-6i$	B1	1	
(b)(i)	$(3-i)^2 = 9-6i+i^2 = 8-6i$ $a(8-6i)+b(3-i)+10i = 0$	M1		Substituting 3 – i into quadratic.
	Equating R & I parts	M1A1		
	8a + 3b = 0			
	-6a - b + 10 = 0			
	Attempt to solve	M1		
	a = 3, $b = -8$	A1A1F	6	a = 3 is AG If $a = 3$ is assumed, allow M1A1 for b
(ii)	Sum of roots $=-\frac{b}{a}$	M1		If sum of roots is – 8 give M0
	or product = $\frac{c}{a}$			
	$\beta = -\frac{1}{3} + i$	A1A1F	3	A1 for $-\frac{1}{3}$, A1 for $+i$
	Total		10	

- 3 It is given that z = x + iy, where x and y are real numbers.
 - (a) Write down, in terms of x and y, an expression for z^* , the complex conjugate of z.

 (1 mark)

(b) Find, in terms of x and y, the real and imaginary parts of

$$2z - iz^* (2 marks)$$

(c) Find the complex number z such that

$$2z - iz^* = 3i (3 marks)$$

3(a)	$z^* = x - iy$	B1	1	
(b)	R = 2x - y $I = -x + 2y$	B1		$i^2 = -1$ must be used
	I = -x + 2y	В1	2	Condone $I = i(x+2y)$; Answers may appear in (c)
(c)	Equating R and/or I parts Attempt to solve sim equations z = 1 + 2i	M1 m1 A1	3	Allow $x = 1, y = 2$
	Total		6	

1 (a) Solve the following equations, giving each root in the form a + bi:

(i)
$$x^2 + 16 = 0$$
; (2 marks)

(ii)
$$x^2 - 2x + 17 = 0$$
. (2 marks)

(b) (i) Expand
$$(1+x)^3$$
. (2 marks)

(ii) Express
$$(1+i)^3$$
 in the form $a+bi$. (2 marks)

(iii) Hence, or otherwise, verify that x = 1 + i satisfies the equation

$$x^3 + 2x - 4i = 0 (2 marks)$$

Q	Solution	Marks	Total	Comments
1(a)(i)	Roots are ± 4i	M1A1	2	M1 for one correct root or two correct
				factors
(ii)	Roots are 1 ± 4i	M1A1	2	M1 for correct method
(b)(i)	$(1+x)^3 = 1 + 3x + 3x^2 + x^3$	M1A1	2	M1A0 if one small error
(~)(-)	(1+x) = 1+3x+3x+x			
(ii)	$(1+i)^3 = 1+3i-3-i = -2+2i$	M1A1	2	M1 if $i^2 = -1$ used
(iii)	$(1+i)^3 + 2(1+i) - 4i$ = (-2+2i)+(2-2i) = 0	M1		with attempt to evaluate
	$\dots = (-2+2i)+(2-2i)=0$	A1	2	convincingly shown (AG)
	Total		10	