2. A car of mass 1000 kg is towing a caravan of mass 750 kg along a straight horizontal road. The caravan is connected to the car by a tow-bar which is parallel to the direction of motion of the car and the caravan. The tow-bar is modelled as a light rod. The engine of the car provides a constant driving force of 3200 N. The resistances to the motion of the car and the caravan are modelled as constant forces of magnitude 800 newtons and *R* newtons respectively.

Given that the acceleration of the car and the caravan is $0.88 \,\mathrm{m \, s^{-2}}$,

(a) show that
$$R = 860$$
, (3)

(b) find the tension in the tow-bar. (3)

Question Number	Scheme	Marks
2 (a)	750 kg T T (1000 kg) 3200 N 800 N	
	For the whole system $R(\rightarrow) \qquad 3200-800-R=1750\times0.88$ Leading to $R=860 \bigstar$	M1 A1 A1
(b)	For the caravan $R(\rightarrow)$ $T-860 = 750 \times 0.88$	M1 A1
	Leading to $T = 1520 \text{ (N)}$	A1 (3)
	Alternative for (b) For the car	
	$R(\rightarrow)$ 3200 – 800 – $T = 1000 \times 0.88$	M1 A1
	Leading to $T = 1520 \text{ (N)}$	A1 (3)

3 Two particles, of masses 4kg and 6kg, are connected by a light, inextensible string that passes over a smooth, light pulley. The two particles are released from rest, with the string taut, as shown in the diagram.

(a) Show that the acceleration of each particle is 1.96 m s⁻².

(5 marks)

(b) Calculate the tension in the string.

(2 marks)

3(a)	T - 4g = 4a $6g - T = 6a$	M1		Forms two equations of motion
	6g - T = 6a	A1 A1		First equation correct
				Second equation correct
	6g - (4a + 4g) = 6a $a = \frac{2g}{10} = 1.96 \mathrm{m s}^{-2}$			
	$a = \frac{2g}{1.96} = 1.96 \text{ m/s}^{-2}$	ml	_	Solves for a
	10	A1	5	Correct a from correct working
(b)	$T = 4 \times 1.96 + 4 \times 9.8 = 47.0 \text{ N}$	M1		Uses one equation to find T
(0)	1	A1	2	Correct T
	Total		7	

4 Two particles, *A* and *B*, are connected by a light inextensible string, which passes over a smooth light pulley. Particle *A* is on a smooth slope, at 45° to the horizontal, and particle *B* hangs with the string vertical, as shown in the diagram.

The mass of A is 14 kg and the mass of B is 6 kg.

- (a) Using two equations of motion, show that the acceleration of the particles is $1.91 \,\mathrm{m \, s^{-2}}$, correct to three significant figures. (6 marks)
- (b) Particle B is replaced by a particle C of mass $m \log n$. After the particles have been set in motion, they move with a constant speed. Find m. (4 marks)

Question	Solution	Marks	Total	Comments
Number				
and Part				
4(a)	$14a = 14g\sin 45^{\circ} - T$	M1		Equation of motion for one particle
	6a = T - 6g	A1		Correct equation
	14 14 1 450 (6 16)	M1		Equation of motion for other particle
	$14a = 14g \sin 43^{\circ} - (6a + 6g)$	A1		Correct equation
	$a = 14g \sin 45^{\circ} - 6g = 1.01 \text{ ms}^{-2}$	M1		Solving for <i>a</i>
	$a = \frac{14g \sin 45^{\circ} - (6a + 6g)}{20} = 1.91 \text{ms}^{-2}$	A1	6	Correct a from correct working
(b)	T = mg	M1		Equation for one particle
		M1		Equation for other particle
	$T = 14g\cos 45^{\circ}$	A1		Correct m
	$m = 14\cos 45^\circ = 9.90 \text{ kg}$	A1	4	
	Total		10	

6 Two children are holding the ends of a light, inextensible rope, which passes over a light, smooth pulley. Initially Tom, who has a mass of 40 kg, is standing at ground level and Simon, who has a mass of 60 kg, is on the edge of a fixed platform 2 metres above ground level. Model the two boys as particles, one initially at ground level, and the other initially at a height of 2 metres. The rope is taut.

Simon steps off the platform and as he falls vertically, Tom rises vertically.

- (a) Assume that the rope remains taut while the boys are moving.
 - (i) Show that the acceleration of each boy is 1.96 m s^{-2} . (5 marks)
 - (ii) Find the tension in the rope. (2 marks)
- (b) Find the total distance that Tom travels upwards. (7 marks)

Question Number	Solution	Marks	Total	Comments
and part				
6(a)(i)	$60 \times 9.8 - T = 60a$	M1		Equation of motion for one boy
		A 1		Correct equation
	$T - 40 \times 9.8 = 40a$	M1		Equation of motion for other boy
		A1		Correct equation
	588 - (40a + 392) = 60a			
	$a = 1.96 \mathrm{m s^{-2}}$	A1	5	ag Correct answer from correct working
(ii)	$T = 40 \times 1.96 + 392 = 470 \text{ N (to 3 sf)}$	M1		Substituting for a and solving for <i>T</i>
	, , ,	A 1	2	awrt 470
6(b)	$v^2 = 0^2 + 2 \times 1.96 \times 2 = 7.84$	M1		Finding v^2 using $s = 2$, $u = 0$ and $a = 1.96$
()	V = 0 + 2×1.70×2 = 7.04	A 1		Correct v or v^2
	$0^2 = 7.84 + 2 \times (-9.8)s$	m1		Equation for s with $v = 0$ and $a = \pm g$
	()	A 1		
	s = 0.4	m 1		Salaina Sana
	$h_{\text{max}} = 2 + 0.4 = 2.4 \text{m}$	m1		Solving for s
	max — · · · · · · · · · · · · · · · · · ·	A1	_	Obtaining 0.4
		A1	7	Adding 2 to get 2.4
	Total		14	