- 4 The matrix A is $\begin{bmatrix} 4 & k \\ 3 & 6 \end{bmatrix}$.
 - (a) Find the determinant of A.

(1 mark)

(b) Find the value of k for which the inverse of A does not exist.

(2 marks)

(c) The transformation T is given by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$$

(i) A triangle has area 5 square units.

Find the area of its image under **T** in the case when k = 8.

(1 mark)

(ii) Find the possible values of k in order that, under T, a triangle with area 5 square units would be mapped onto a triangle with area 15 square units. (3 marks)

4(a)	24 - 3k	B1	1	
(b)	$Det = 0 \implies k = 8$	M1√ A1√	2	ft (a)
(c)(i)	Area = 0	B1√	1	ft $5 \times \text{cand's Det with } k = 8$
(ii)	Det = 3 and / or -3 $\Rightarrow k = 7$ $\Rightarrow k = 9$	M1 A1√ A1	3	ft cand's " $24 - 3k = 3$ " cao
	Total		7	

2 (a) Show, using row operations, that (a + b + c) is a factor of

$$\Delta = \begin{vmatrix} ab & bc & ca \\ a+b & b+c & c+a \\ c & a & b \end{vmatrix}$$
 (2 marks)

(b) Factorise Δ completely into linear factors.

(4 marks)

(0)) Tactorise \(\Delta\) completely into linear factors.					
2 (a)	$A = \begin{vmatrix} ab & bc & ca \\ a+b+c & b+c+a & c+a+b \\ c & a & b \end{vmatrix}$	M1				
	$= (a+b+c)\begin{vmatrix} ab & bc & ca \\ 1 & 1 & 1 \\ c & a & b \end{vmatrix}$	A1	2			
(b)	$\begin{vmatrix} C_1' = C_1 - C_3 \\ C_2' = C_2 - C_3 \end{vmatrix} \begin{vmatrix} a(b-c) & c(b-a) & ca \\ 0 & 0 & 1 \\ c-b & a-b & b \end{vmatrix}$	М1		Good attempt at 2nd factor		
	$= (a+b+c)(b-c)(b-a)\begin{vmatrix} a & c & ca \\ 0 & 0 & 1 \\ -1 & -1 & b \end{vmatrix}$ Full factorisation attempt (possibly by	A1		At least one further factor found		
	multiplying out) $= (a+b+c)(a-b)(b-c)(c-a)$	M1 A1	4	cao, any form		
	Total		6			

2 (a) (i) Find, in terms of
$$k$$
, the determinant of the matrix $\mathbf{A} = \begin{bmatrix} 4 & -2 \\ 5 & k \end{bmatrix}$. (1 mark)

(ii) Find the value of
$$k$$
 for which A is singular. (2 marks)

(b) (i) Find the inverse of the matrix
$$\mathbf{B} = \begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}$$
. (3 marks)

(ii) The transformation T is given by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{B} \begin{bmatrix} x \\ y \end{bmatrix}$$

Find the coordinates of the point which is mapped onto (6,7) under T. (3 marks)

2(a)(i)	$\det A = 4k + 10$	B1	1	
(ii)	Singular \Rightarrow det $A = 0$ $\Rightarrow k = -2.5$	M1 A1√	2	oe ft candidate's determinant
(b)(i)		B 1		
	$\det \mathbf{B} = -2$ $\mathbf{B}^{-1} = \frac{1}{\det \mathbf{B}} \begin{bmatrix} -3 & 2\\ -5 & 4 \end{bmatrix}$	M 1		Condone one slip in matrix, multiplication by det B , or omission of det B
	$= \frac{1}{-2} \begin{bmatrix} -3 & 2 \\ -5 & 4 \end{bmatrix} = \begin{bmatrix} 1.5 & -1 \\ 2.5 & -2 \end{bmatrix}$	A 1	3	Any equivalent
(ii)	$\mathbf{B}^{-1} \begin{bmatrix} 6 \\ 7 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$	M 1		Must premultiply column by inverse and attempt to multiply to get column vector.
	x = 2 $y = 1$	A1√ A1√	3	Or setting up and solving sim eqns. May leave as column or coordinates sc B3 correct answer without working
	Total		9	

5 (a) Factorise
$$\begin{vmatrix} x^2 & x & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{vmatrix}$$
. (4 marks)

(b) It is given that

$$\mathbf{A} = \begin{bmatrix} x & 0 & 2 \\ 0 & x & 9 \\ 0 & 1 & x \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} x^2 & x & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}.$$

Using your result in part (a), or otherwise, express det(AB) in factorised form. (4 marks)

5	(a)	$x^{2}(1-2) - x(1-4) + 1(2-4)$	M1A1		
		$-x^2+3x-2$	A 1		
		-(x-1)(x-2)	A1F	4	
	(b)	det A det B used	M1		
		$\det \mathbf{B} = x^3 - 9x$	M1A1		
		$\det \mathbf{AB} = -x(x-3)(x+3)(x-1)(x-2)$	A1F	4	If any other method used, it must be complete
	·	Total		8	