FP4 Determinants Challenge

Challenge 1

The matrix A is $\begin{bmatrix} 4 & k \\ 3 & 6 \end{bmatrix}$.

(a) Find the determinant of A.

(1 mark)

(b) Find the value of k for which the inverse of A does not exist.

(2 marks)

(c) The transformation **T** is given by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$$

(i) A triangle has area 5 square units.

Find the area of its image under **T** in the case when k = 8.

(1 mark)

(ii) Find the possible values of k in order that, under T, a triangle with area 5 square units would be mapped onto a triangle with area 15 square units. (3 marks)

Challenge 2

(a) Show, using row operations, that (a + b + c) is a factor of

$$\Delta = \begin{vmatrix} ab & bc & ca \\ a+b & b+c & c+a \\ c & a & b \end{vmatrix}$$
 (2 marks)

(b) Factorise Δ completely into linear factors. (4 marks)

Challenge 3

- (a) (i) Find, in terms of k, the determinant of the matrix $\mathbf{A} = \begin{bmatrix} 4 & -2 \\ 5 & k \end{bmatrix}$. (1 mark)
 - (ii) Find the value of k for which A is singular. (2 marks)
- (b) (i) Find the inverse of the matrix $\mathbf{B} = \begin{bmatrix} 4 & -2 \\ 5 & -3 \end{bmatrix}$. (3 marks)
 - (ii) The transformation T is given by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{B} \begin{bmatrix} x \\ y \end{bmatrix}$$

Find the coordinates of the point which is mapped onto (6,7) under T. (3 marks)

Final Challenge

(a) Factorise
$$\begin{vmatrix} x^2 & x & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{vmatrix}$$
. (4 marks)

(b) It is given that

$$\mathbf{A} = \begin{bmatrix} x & 0 & 2 \\ 0 & x & 9 \\ 0 & 1 & x \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} x^2 & x & 1 \\ 1 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix}.$$

Using your result in part (a), or otherwise, express det(AB) in factorised form. (4 marks)

