Find the equation of the tangent to the curve $y = \frac{2+x}{\cos x}$ at the point on the curve where x = 0. (6 marks)

Q	Solution	Marks	Total	Comments		
3	$y' = \frac{\cos x + (2+x)\sin x}{\cos^2 x}$	M1A1		Product rule acceptable $\frac{\cos x - (2+x)(-\sin x)}{\cos^2 x}$ M1A1 If simplified incorrectly M1A0		
	x = 0, y' = 1 x = 0, y = 2	A1F B1				
	Tangent: $\frac{y-2}{x} = 1$ $y = 2+x$	m1A1F	6	f.t. non-zero / non-infinite gradient m1 depends on first M1		
	Total		6			

(a) Differentiate:

(i)
$$2x^{\frac{1}{2}}$$
;

(ii)
$$ln(x+1)$$
. (3 marks)

(b) Hence show that
$$\int_{1}^{4} \left(x^{-\frac{1}{2}} + \frac{1}{x+1} \right) dx = 2 + \ln \frac{5}{2}$$
. (5 marks)

3 (a)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(2x^{\frac{1}{2}} \right) = kx^{-\frac{1}{2}} \text{or} \frac{\mathrm{d}}{\mathrm{d}x} (\ln x) = \frac{1}{x}$	M1		
(i)	<i>k</i> = 1	A1		Allow $2 \times \frac{1}{2}$
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x}(\ln(x+1)) = \frac{1}{x+1}$	A1	3	
(b)	$k = 1$ $\frac{d}{dx}(\ln(x+1)) = \frac{1}{x+1}$ $\int \left(x^{-\frac{1}{2}} + \frac{1}{x+1}\right) dx = 2x^{\frac{1}{2}} + \ln(x+1)$ Substitution we have	M1		Allow M1 if at least one term correct
	Substituting $x = 4$ or $x = 1$	m1		in at least one correct term
	Both substitutions and subtraction	m1		ditto; condone subtraction wrong way round.
	Use of log law	m1		Accept $(4 + \ln 5) - (2 + \ln 2) = 2 + \ln \frac{5}{2}$
	Answer $2 + \ln \frac{5}{2}$	A1	5	convincingly found (AG)
	Total		8	

(a) By using the chain rule, or otherwise, find
$$\frac{dy}{dx}$$
 when $y = \ln(x^2 + 9)$. (3 marks)

(b) Hence show that
$$\int_0^3 \frac{x}{x^2 + 9} dx = \frac{1}{2} \ln 2.$$
 (3 marks)

(c) Show that
$$\int_0^3 \frac{x+1}{x^2+9} dx = \frac{1}{2} \ln 2 + \frac{\pi}{12}.$$
 (4 marks)

Q	Solution	Marks	Total	Comments
4 (a)	$y = \ln(x^2 + 9)$			
	let $u = x^2 + 9$ then $\frac{du}{dx} = 2x$			
	and $y = \ln u$: $\frac{\mathrm{d}y}{\mathrm{d}u} = \frac{1}{u} = \frac{1}{x^2 + 9}$	M1		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \times \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{x^2 + 9} \times 2x$	M1		Use of chain rule
	$=\frac{2x}{x^2+9}$	Al	3	CAO
(b)	$\int_{0}^{3} \frac{x}{x^2 + 9} dx = \left[\frac{1}{2} \ln(x^2 + 9) \right]_{0}^{3}$	M1		
	$=\frac{1}{2}\ln 18 - \frac{1}{2}\ln 9$	Al		
	$=\frac{1}{2}\ln 2$	Al	3	AG
(c)	$\int_{0}^{3} \frac{x+1}{x^{2}+9} dx = \int_{0}^{3} \frac{x}{x^{2}+9} dx + \int_{0}^{3} \frac{1}{x^{2}+9} dx$	M1		Attempted
	$= \frac{1}{2} \ln 2 + \frac{1}{3} \left[\tan^{-1} \left(\frac{x}{3} \right) \right]_0^3$	Al		
	$==\frac{1}{2}\ln 2 + \frac{1}{3}\left[\tan^{-1}(-1) - \tan^{-1}(0)\right]$	M1		Limits used in correct expression
	$= \frac{1}{2}\ln 2 + \frac{\pi}{12}$	Al	4	AG
	Total		10	

A curve has equation

$$y = e^{2x} - 4x.$$

- (a) Show that the x-coordinate of the stationary point on the curve is $\frac{1}{2} \ln 2$. Find the corresponding y-coordinate in the form $a + b \ln 2$, where a and b are integers to be determined. (6 marks)
- (b) Find an expression for $\frac{d^2y}{dx^2}$ and hence determine the nature of the stationary point. (3 marks)

Q	Solution	Marks	Total	Comments
6 (a)	Derivative of e^{2x} is ke^{2x}	M1		
	$y' = 2e^{2x} - 4$ Attempt to solve $y' = 0$ Use of ln as inverse of exp $x = \frac{1}{2} \ln 2$ $y = 2 - 2 \ln 2$	A1 M1 m1 A1	6	at least as far as $e^{2x} = 2$ OE verification can earn M1m1A0 convincingly found (AG)
(b)	Differentiation of their y' $y'' = 4e^{2x}$ y'' > 0 at the SP, so minimum point	m1 A1F B1F	3	dependent on first M1 f.t numerical error allow their y'' ; condone incorrect pos value of $4e^{2x}$ at SP; f.t $y'' < 0$ at SP