2 Sara is using the "vena contractor phenomenon" to measure the rate of flow of liquid out of an inverted cone of semi-vertical angle α .

The standard formula for the rate of flow is:

$$R = \frac{8}{15} C_D \tan \alpha \sqrt{2gh^5},$$

where C_D is the coefficient of discharge which is a dimensionless constant and h is the height of liquid in the inverted cone.

By using dimensional analysis, show that the dimension of R is a rate of flow. (4 marks)

2	Dimensions of h is L			
	Dimensions of g is LT^{-2}	B1		
	\therefore dimensions of $\frac{8}{15}C_D \tan \alpha \sqrt{2gh^5}$			
	is dimension of $(gh^5)^{\frac{1}{2}}$			
	$=(LT^{-2}.L^5)^{\frac{1}{2}}$	M1		
	$=(L^6T^{-2})^{\frac{1}{2}}$	A 1		Ability to handle powers
	$=L^3T^{-1}$			
	= volume/sec	A 1		
	which is a rate of flow			
	Total		4	

3 The gravitational force acting between two bodies of mass m_1 and m_2 in deep space is

$$\frac{km_1m_2}{d^2}$$

where d is the distance between the bodies.

The dimensional constant, k, is of the form $M^{\alpha}L^{\beta}T^{\gamma}$.

By considering dimensions find α , β and γ .

(4 marks)

Question	Solution	Marks	Total	Comments
3	Force = $\frac{km_1m_2}{d^2}$			
	Dimensions of force is MLT ⁻²	B1		
	$k = \text{Force} \times \frac{d^2}{m_1 m_2}$			
	$= MLT^{-2} \cdot \frac{L^2}{M^2}$	M1		
	$= M^{-1}L^3T^{-2}$	A1 A1	(4)	
		TOTAL	(4)	

3 The gravitational force of the sun, which has mass m_1 , on a planet, of mass m_2 , is an attractive force directed along the line joining them and of magnitude $\frac{Gm_1m_2}{d^2}$ where d is the distance between their centres and G is the universal gravitational constant.

Use dimensional analysis to find the dimensions of G.

(4 marks)

Q	Solution	Marks	Total	Comments
3	Force = $G \frac{m_1 m_2}{d^2}$			
	or			
	$G = \frac{d^2 \times \text{force}}{m_1 m_2}$			
	Dimensions of a force (ma) is			
	MLT ⁻²	B1		
	∴ Dimensions of G are $\frac{L^2 \cdot M L T^{-2}}{M^2}$	M1		
	$=L^3 T^{-2}M^{-1}$	A1A1	4	
	Total		4	

2 The acceleration, a, of a body falling with speed v and subject to air resistance may be modelled by the equation

$$a = g - \lambda v^2$$

where λ is constant.

Find the dimensions of λ in order that the equation is dimensionally consistent. (4 marks)

2	Dimensions of a and g are LT^{-2} Dimension of v is LT^{-1}	B1 B1		
	$\lambda = \frac{LT^{-2}}{(LT^{-1})^2}$	M1		
	$=L^{-1}$	A1	4	
	Total		4	

4 John believes that a possible formula is

$$Q = 2\pi \sqrt{\frac{l}{g}}$$

By considering dimensions, find the dimensions of Q.

(4 marks)

4	Considering dimensions 2, π have no dimension, <i>l</i> has length, L <i>g</i> is m/s ² i.e. $\frac{L}{T^2}$	M1 A1		
	T^{2} $\therefore 2\pi \sqrt{\frac{l}{g}} \text{ is } \sqrt{\frac{L}{\frac{L}{T^{2}}}}$ $= \sqrt{T^{2}}$	M1		
	$= \sqrt{T^2}$ = T ∴ dimension of result is time	A1		
	Total		4	