7 The matrix **M** is defined by

$$\mathbf{M} = \begin{bmatrix} 2 & -1 & 1 \\ 2 & 3 & 2 \\ 1 & 1 & 2 \end{bmatrix}.$$

- (a) Show that **M** has just two eigenvalues, 1 and 3. (6 marks)
- (b) Find an eigenvector corresponding to each eigenvalue. (5 marks)

The matrix \mathbf{M} represents a linear transformation, T, of three dimensional space.

- (c) Write down a vector equation of the line of invariant points of T. (1 mark)
- (d) Write down a vector equation of another line which is invariant under T. (1 mark)

	0	Solution	Marks	Total	Comments
7	(a)	2 1 1 1			
		$\begin{bmatrix} 2 & 3-\lambda & 2 \end{bmatrix}$	M1 \		
		$\begin{bmatrix} 2-\lambda & -1 & 1 \\ 2 & 3-\lambda & 2 \\ 1 & 1 & 2-\lambda \end{bmatrix}$			
		$(2-\lambda)(6-5\lambda+\lambda^2-2)+1(2-2\lambda)+1(-1+\lambda)$	M1		a.e.f.
		$-\lambda^3 + 7\lambda^2 - 15\lambda + 9$	A1		
		$(\lambda - 1)(\lambda - 3)^2 = 0$	M1A1		
		$\lambda = 1$ or 3	A1	6	a.g.
			711		a.g.
	(b)	$\begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1 \end{bmatrix} \mathbf{v} = 0, \begin{bmatrix} -1 & -1 & 1 \\ 2 & 0 & 2 \\ 1 & 1 & -1 \end{bmatrix} \mathbf{v} = 0$			
		$\begin{vmatrix} 2 & 2 & 2 & \mathbf{v} = 0, \\ 2 & 0 & 2 & \mathbf{v} = 0 \end{vmatrix}$	M1,M1		
		[1] [-1]			
		E.g. $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$	M1A1,A1	5	M1A1 for either
		$\lfloor -1 \rfloor$ $\lfloor 1 \rfloor$			
	(c)	$\mathbf{r} = \lambda \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$			
		$\mathbf{r} = \lambda \begin{vmatrix} 0 \end{vmatrix}$	B1√	1	
		[-1]			
	(4)	Г •7			
	(a)	$\mathbf{r} = \mu \begin{bmatrix} -1\\2\\1 \end{bmatrix}$	в1√		
		$\mathbf{r} = \mu \begin{bmatrix} 2 \\ 1 \end{bmatrix}$,	1	
		[1]			
		Total		13	

5 It is given that the transformation represented by the matrix

$$\mathbf{M} = \begin{bmatrix} 6 & -6 & 1 \\ 3 & -3 & 1 \\ 2 & -4 & 3 \end{bmatrix}$$

has invariant lines

$$x = y = z,$$

$$x = y = \frac{1}{2}z,$$

$$x = 2y, z = 0.$$

- (a) (i) Write down an eigenvector corresponding to each invariant line. (2 marks)
 - (ii) Hence find the eigenvalues of \mathbf{M} . (3 marks)
- (b) Write down a matrix \mathbf{U} and a diagonal matrix \mathbf{D} such that

$$\mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1}. \tag{3 marks}$$

5 (a)(i)	$\lceil 1 \rceil \lceil 1 \rceil \lceil 2 \rceil$			
		B2	2	B1 for any 1
	[1] [1]			
(ii)	$\mathbf{M} \mid 1 \mid = \mid 1 \mid \Rightarrow \lambda = 1$			
	[1] [1]			
	[1] [2]			
	$\mathbf{M} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow \lambda = 2$			
	$\lfloor 2 \rfloor \lfloor 4 \rfloor$			
	[2] [6]			
	$\mathbf{M} \begin{vmatrix} 1 \\ 1 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \end{vmatrix} \Rightarrow \lambda = 3$	В3	3	Allow B1 for each eigenvalue
(b)	$\mathbf{U} = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}$	B1√		
	$\mathbf{U} = \begin{vmatrix} 1 & 1 & 1 \end{vmatrix}$			
	[1 2 0]			
	[1]	B1√		
	$\mathbf{D} = \begin{bmatrix} 2 \end{bmatrix}$	B1	3	If orders correspond
	3			
	Total		8	

6 (a) Find the characteristic equation of the matrix

$$\mathbf{M} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix},$$

and hence find the eigenvalues of \boldsymbol{M} , and corresponding eigenvectors, \boldsymbol{v}_1 and \boldsymbol{v}_2 .

(7 marks)

(b) (i) Express $\begin{bmatrix} 5 \\ -7 \end{bmatrix}$ in the form $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$, where α and β are real numbers. (3 marks)

(ii) Hence find
$$\mathbf{M}^{-1} \begin{bmatrix} 5 \\ -7 \end{bmatrix}$$
. (3 marks)

Q	Solution	Marks	Total	Comments
6 (a)	$\begin{vmatrix} 3-\lambda & 2 \end{vmatrix}_{-0}$	M1		
	$\left \begin{array}{cc} 3 - \lambda & 2 \\ 1 & 4 - \lambda \end{array} \right = 0$	A 1		
	$(3-\lambda)(4-\lambda)-2=0$			
	$(3 - \lambda)(4 - \lambda) - 2 = 0$ $\lambda^2 - 7\lambda + 10 = 0 \Rightarrow \lambda = 2,5$	M1A1		
	$\begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	M1A1A1	7	
(b)(i)	$\begin{bmatrix} 5 \\ -7 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ -1 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	M1A2	3	
(ii)	$\mathbf{M}^{-1} \begin{bmatrix} 5 \\ -7 \end{bmatrix} = \frac{4}{2} \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \frac{3}{5} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	M1A1		
	$\frac{1}{5} \begin{bmatrix} 17\\ -13 \end{bmatrix}$	A1	3	
	Total		13	

6 The matrix M is defined by

$$\mathbf{M} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}.$$

- (a) Verify that **M** has an eigenvalue 1 and find a corresponding eigenvector. (5 marks)
- (b) (i) Show that \mathbf{M} has only one other distinct eigenvalue and find this eigenvalue. (4 marks)
 - (ii) Deduce that any non-zero vector of the form $\begin{bmatrix} p \\ q \\ q \end{bmatrix}$, where p and q are real, is an eigenvector corresponding to this eigenvalue.

 (3 marks)
- (c) (i) Find a Cartesian equation of a line l_1 lying in the plane x = 0 such that each point of l_1 is invariant under the transformation T represented by \mathbf{M} . (2 marks)
 - (ii) Find a Cartesian equation of another line l_2 in the plane x = 0 which is invariant under T. (2 marks)

	under 1.			
Q	Solution	Marks	Total	Comments
6 (a)	$\begin{vmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{vmatrix} = 0$	MIAI		
	$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$			
	$\therefore 3x = 0$	MlAl		
	$y + 2z = 0$ eigenvector is $\begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$	AlF	5	OE
430				
(b)(i)	$\begin{vmatrix} 4-\lambda & 0 & 0 \\ 0 & 2-\lambda & 2 \\ 0 & 1 & 3-\lambda \end{vmatrix}$			
	$= (4 - \lambda)((2 - \lambda)(3 - \lambda) - 2)$	MIAI		Allow whenever this line appears
	$= (4 - \lambda)(\lambda - 4)(\lambda - 1)$	AlF		Provided quadratic factorises
	$\lambda = 4$	Al	4	(6.004)
(ii)		MI		Accept $\begin{bmatrix} p \\ q \\ q \end{bmatrix}$ substituted in and verified
	y = z, x any value	Al		
	eigenvector $\begin{bmatrix} p \\ q \\ q \end{bmatrix}$	Al	3	AG
(c)(i)	$x = 0, y = -2z \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -2t \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ -2t \\ t \end{bmatrix}$			
	∴ point invariant	MlAl	2	
(ii)	$x = 0, y = z \qquad \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ t \\ t \end{bmatrix} = 4 \begin{bmatrix} 0 \\ t \\ t \end{bmatrix}$			
3 3	: invariant line	MIAI	2	
2	Total	8 8	16	

4 The matrix M is given by

$$\mathbf{M} = \begin{bmatrix} 5 & -2 \\ 12 & -5 \end{bmatrix}.$$

- (a) (i) Find the eigenvalues of **M** and corresponding eigenvectors. (7 marks)
 - (ii) Write down a matrix U and a diagonal matrix D such that

$$\mathbf{M} = \mathbf{U} \, \mathbf{D} \, \mathbf{U}^{-1}. \tag{2 marks}$$

- (iii) Evaluate \mathbf{D}^2 . (1 mark)
- (b) (i) Show that $\mathbf{M}^n = \mathbf{U} \mathbf{D}^n \mathbf{U}^{-1}$, where *n* is positive. (2 marks)
 - (ii) Hence find \mathbf{M}^{10} and \mathbf{M}^{11} . (3 marks)

Q	Solution	Marks	Total	Comments
4 (a)(i)	$ \begin{vmatrix} 5-\lambda & -2 \\ 12 & -5-\lambda \end{vmatrix} $	M1		
	$(5-\lambda)(-5-\lambda) + 24$ $\lambda^2 - 1 = 0$	Al		
	$\lambda^2 - 1 = 0$	AIF		
	$\lambda = \pm 1$	A1F		
	$\lambda = 1$, $\begin{bmatrix} 4 & -2 \\ 12 & -6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $2x - y = 0$	M1		Must have consistent equations
	eigenvector is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	Al		no ft
	$\lambda = -1$, $\begin{bmatrix} 6 & -2 \\ 12 & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $3x - y = 0$			
	eigenvector is $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	Al	7	no ft
(ii)	$\mathbf{U} = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	B1FB1F	2	ft on incorrect eigenvalues and eigenvectors; must be consistent for both B1
(iii)	$\mathbf{D}^2 = \mathbf{I}$	B1F	1	Bi
(b)(i)	$\mathbf{M}^{n} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1} \mathbf{U} \mathbf{D} \mathbf{U}^{-1} (n \text{ times})$	B1		
	Use of $\mathbf{U}^{-1}\mathbf{U} = \mathbf{I}$	B1	2	at any stage
	$\mathbf{M}^n = \mathbf{U} \mathbf{D}^n \mathbf{U}^{-1}$			AG
(ii)	$\mathbf{M}^{10} = \mathbf{U} \ \mathbf{D}^{10} \ \mathbf{U}^{-1}$	M1		could give M1 for $\mathbf{U} \mathbf{D}^{11} \mathbf{U}^{-1} = \mathbf{M}^{11}$
	= I	Al		
	$\mathbf{M}^{11} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1} = \mathbf{M}$	A1	3	
	Total		15	