FP4 Eigenvectors Challenge

Challenge 1

It is given that the transformation represented by the matrix

$$\mathbf{M} = \begin{bmatrix} 6 & -6 & 1 \\ 3 & -3 & 1 \\ 2 & -4 & 3 \end{bmatrix}$$

has invariant lines

$$x = y = z,$$

$$x = y = \frac{1}{2}z,$$

$$x = 2y, z = 0.$$

- (a) (i) Write down an eigenvector corresponding to each invariant line. (2 marks)
 - (ii) Hence find the eigenvalues of **M**. (3 marks)
- (b) Write down a matrix **U** and a diagonal matrix **D** such that

$$\mathbf{M} = \mathbf{U} \mathbf{D} \mathbf{U}^{-1}. \tag{3 marks}$$

Challenge 2

(a) Find the characteristic equation of the matrix

$$\mathbf{M} = \begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix},$$

and hence find the eigenvalues of M, and corresponding eigenvectors, \mathbf{v}_1 and \mathbf{v}_2 .

(7 marks)

- (b) (i) Express $\begin{bmatrix} 5 \\ -7 \end{bmatrix}$ in the form $\alpha \mathbf{v}_1 + \beta \mathbf{v}_2$, where α and β are real numbers. (3 marks)
 - (ii) Hence find $\mathbf{M}^{-1} \begin{bmatrix} 5 \\ -7 \end{bmatrix}$. (3 marks)

Challenge 3

The matrix **M** is defined by

$$\mathbf{M} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 1 & 3 \end{bmatrix}.$$

- (a) Verify that **M** has an eigenvalue 1 and find a corresponding eigenvector. (5 marks)
- (b) (i) Show that **M** has only one other distinct eigenvalue and find this eigenvalue. (4 marks)
 - (ii) Deduce that any non-zero vector of the form $\begin{bmatrix} p \\ q \\ q \end{bmatrix}$, where p and q are real, is an eigenvector corresponding to this eigenvalue.

 (3 marks)
- (c) (i) Find a Cartesian equation of a line l_1 lying in the plane x = 0 such that each point of l_1 is invariant under the transformation T represented by M. (2 marks)
 - (ii) Find a Cartesian equation of another line l_2 in the plane x = 0 which is invariant under T.

Final Challenge

The matrix M is given by

$$\mathbf{M} = \begin{bmatrix} 5 & -2 \\ 12 & -5 \end{bmatrix}.$$

- (a) (i) Find the eigenvalues of **M** and corresponding eigenvectors. (7 marks)
 - (ii) Write down a matrix U and a diagonal matrix D such that

$$\mathbf{M} = \mathbf{U} \, \mathbf{D} \, \mathbf{U}^{-1}. \tag{2 marks}$$

- (iii) Evaluate \mathbf{D}^2 . (1 mark)
- (b) (i) Show that $\mathbf{M}^n = \mathbf{U} \mathbf{D}^n \mathbf{U}^{-1}$, where *n* is positive. (2 marks)
 - (ii) Hence find \mathbf{M}^{10} and \mathbf{M}^{11} . (3 marks)

