# FP1: <br> Matrices 

# Past Paper Questions <br> 2006-2013 

Name:

7 (a) The transformation T is defined by the matrix $\mathbf{A}$, where

$$
\mathbf{A}=\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right]
$$

(i) Describe the transformation T geometrically.
(ii) Calculate the matrix product $\mathbf{A}^{2}$.
(iii) Explain briefly why the transformation T followed by T is the identity transformation.
(b) The matrix $\mathbf{B}$ is defined by

$$
\mathbf{B}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

(i) Calculate $\mathbf{B}^{2}-\mathbf{A}^{2}$.
(ii) Calculate $(\mathbf{B}+\mathbf{A})(\mathbf{B}-\mathbf{A})$.

June 2006
5 The matrix $\mathbf{M}$ is defined by

$$
\mathbf{M}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

(a) Find the matrix:
(i) $\mathbf{M}^{2}$;
(ii) $\mathbf{M}^{4}$.
(1 mark)
(b) Describe fully the geometrical transformation represented by $\mathbf{M}$.
(c) Find the matrix $\mathbf{M}^{2006}$.

2 The matrices $\mathbf{A}$ and $\mathbf{B}$ are given by

$$
\mathbf{A}=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} \\
\frac{1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right], \mathbf{B}=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{\sqrt{3}}{2}
\end{array}\right]
$$

(a) Calculate:
(i) $\mathbf{A}+\mathbf{B}$;
(ii) BA.
(b) Describe fully the geometrical transformation represented by each of the following matrices:
(i) $\mathbf{A}$;
(2 marks)
(ii) $\mathbf{B}$; (2 marks)
(iii) $\mathbf{B A}$.
(2 marks)

June 2007
1 The matrices $\mathbf{A}$ and $\mathbf{B}$ are given by

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 1 \\
3 & 8
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
$$

The matrix $\mathbf{M}=\mathbf{A}-2 \mathbf{B}$.
(a) Show that $\mathbf{M}=n\left[\begin{array}{rr}0 & -1 \\ -1 & 0\end{array}\right]$, where $n$ is a positive integer.
(b) The matrix $\mathbf{M}$ represents a combination of an enlargement of scale factor $p$ and a reflection in a line $L$. State the value of $p$ and write down the equation of $L$.
(c) Show that

$$
\mathbf{M}^{2}=q \mathbf{I}
$$

where $q$ is an integer and $\mathbf{I}$ is the $2 \times 2$ identity matrix.

6 The matrix $\mathbf{M}$ is defined by

$$
\mathbf{M}=\left[\begin{array}{cc}
\sqrt{3} & 3 \\
3 & -\sqrt{3}
\end{array}\right]
$$

(a) (i) Show that

$$
\mathbf{M}^{2}=p \mathbf{I}
$$

where $p$ is an integer and $\mathbf{I}$ is the $2 \times 2$ identity matrix.
(ii) Show that the matrix $\mathbf{M}$ can be written in the form

$$
q\left[\begin{array}{cc}
\cos 60^{\circ} & \sin 60^{\circ} \\
\sin 60^{\circ} & -\cos 60^{\circ}
\end{array}\right]
$$

where $q$ is a real number. Give the value of $q$ in surd form.
(b) The matrix $\mathbf{M}$ represents a combination of an enlargement and a reflection.

Find:
(i) the scale factor of the enlargement;
(ii) the equation of the mirror line of the reflection.
(c) Describe fully the geometrical transformation represented by $\mathbf{M}^{4}$.

6 The matrices $\mathbf{A}$ and $\mathbf{B}$ are given by

$$
\mathbf{A}=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right]
$$

(a) Calculate the matrix $\mathbf{A B}$.
(b) Show that $\mathbf{A}^{2}$ is of the form $k \mathbf{I}$, where $k$ is an integer and $\mathbf{I}$ is the $2 \times 2$ identity matrix.
(c) Show that $(\mathbf{A B})^{2} \neq \mathbf{A}^{2} \mathbf{B}^{2}$.

5 The matrices $\mathbf{A}$ and $\mathbf{B}$ are defined by

$$
\mathbf{A}=\left[\begin{array}{cc}
k & k \\
k & -k
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
-k & k \\
k & k
\end{array}\right]
$$

where $k$ is a constant.
(a) Find, in terms of $k$ :
(i) $\mathbf{A}+\mathbf{B}$; (1 mark)
(ii) $\mathbf{A}^{2}$.
(b) Show that $(\mathbf{A}+\mathbf{B})^{2}=\mathbf{A}^{2}+\mathbf{B}^{2}$.
(c) It is now given that $k=1$.
(i) Describe the geometrical transformation represented by the matrix $\mathbf{A}^{2}$.
(2 marks)
(ii) The matrix $\mathbf{A}$ represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection.

June 2009
7 (a) Using surd forms where appropriate, find the matrix which represents:
(i) a rotation about the origin through $30^{\circ}$ anticlockwise;
(ii) a reflection in the line $y=\frac{1}{\sqrt{3}} x$.
(b) The matrix $\mathbf{A}$, where

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]
$$

represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection.
(c) The transformation represented by $\mathbf{A}$ is followed by the transformation represented by $\mathbf{B}$, where

$$
\mathbf{B}=\left[\begin{array}{cc}
\sqrt{3} & -1 \\
1 & \sqrt{3}
\end{array}\right]
$$

Find the matrix of the combined transformation and give a full geometrical description of this combined transformation.

4 It is given that

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 4 \\
3 & 1
\end{array}\right]
$$

and that $\mathbf{I}$ is the $2 \times 2$ identity matrix.
(a) Show that $(\mathbf{A}-\mathbf{I})^{2}=k \mathbf{I}$ for some integer $k$.
(b) Given further that

$$
\mathbf{B}=\left[\begin{array}{ll}
1 & 3 \\
p & 1
\end{array}\right]
$$

find the integer $p$ such that

$$
(\mathbf{A}-\mathbf{B})^{2}=(\mathbf{A}-\mathbf{I})^{2}
$$

June 2010
$6 \quad$ The matrices $\mathbf{A}$ and $\mathbf{B}$ are defined by

$$
\mathbf{A}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

Describe fully the geometrical transformation represented by each of the following matrices:
(a) $\mathbf{A}$;
(b) $\mathbf{B}$;
(2 marks)
(c) $\quad \mathbf{A}^{2}$;
(2 marks)
(d) $\quad \mathbf{B}^{2}$;
(2 marks)
(e) AB .
(3 marks)

3 (a) Write down the $2 \times 2$ matrix corresponding to each of the following transformations:
(i) a rotation about the origin through $90^{\circ}$ clockwise;
(ii) a rotation about the origin through $180^{\circ}$.
(b) The matrices $\mathbf{A}$ and $\mathbf{B}$ are defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
2 & 4 \\
-1 & -3
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
-2 & 1 \\
-4 & 3
\end{array}\right]
$$

(i) Calculate the matrix $\mathbf{A B}$.
(ii) Show that $(\mathbf{A}+\mathbf{B})^{2}=k \mathbf{I}$, where $\mathbf{I}$ is the identity matrix, for some integer $k$.
(3 marks)
(c) Describe the single geometrical transformation, or combination of two geometrical transformations, represented by each of the following matrices:
(i) $\mathbf{A}+\mathbf{B}$;
(ii) $(\mathbf{A}+\mathbf{B})^{2}$;
(iii) $(\mathbf{A}+\mathbf{B})^{4}$.

June 2011
$7 \quad$ The matrix $\mathbf{A}$ is defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
-1 & -\sqrt{3} \\
\sqrt{3} & -1
\end{array}\right]
$$

(a) (i) Calculate the matrix $\mathbf{A}^{2}$.
(ii) Show that $\mathbf{A}^{3}=k \mathbf{I}$, where $k$ is an integer and $\mathbf{I}$ is the $2 \times 2$ identity matrix.
(2 marks)
(b) Describe the single geometrical transformation, or combination of two geometrical transformations, corresponding to each of the matrices:
(i) $\mathbf{A}^{3}$;
(ii) $\mathbf{A}$.
$8 \quad$ The diagram below shows a rectangle $R_{1}$ which has vertices $(0,0),(3,0),(3,2)$ and $(0,2)$.
(a) On the diagram, draw:
(i) the image $R_{2}$ of $R_{1}$ under a rotation through $90^{\circ}$ clockwise about the origin;
(ii) the image $R_{3}$ of $R_{2}$ under the transformation which has matrix

$$
\left[\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right]
$$

(b) Find the matrix of:
(i) the rotation which maps $R_{1}$ onto $R_{2}$;
(ii) the combined transformation which maps $R_{1}$ onto $R_{3}$.

6 (a) Using surd forms, find the matrix of a rotation about the origin through $135^{\circ}$ anticlockwise.
(b) The matrix $\mathbf{M}$ is defined by $\mathbf{M}=\left[\begin{array}{rr}-1 & -1 \\ 1 & -1\end{array}\right]$.
(i) Given that $\mathbf{M}$ represents an enlargement followed by a rotation, find the scale factor of the enlargement and the angle of the rotation.
(ii) The matrix $\mathbf{M}^{2}$ also represents an enlargement followed by a rotation. State the scale factor of the enlargement and the angle of the rotation.
(iii) Show that $\mathbf{M}^{4}=k \mathbf{I}$, where $k$ is an integer and $\mathbf{I}$ is the $2 \times 2$ identity matrix.
(2 marks)
(iv) Deduce that $\mathbf{M}^{2012}=-2^{n} \mathbf{I}$ for some positive integer $n$.
(2 marks)
January 2013
6 (a) The matrix $\mathbf{X}$ is defined by $\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$.
(i) Given that $\mathbf{X}^{2}=\left[\begin{array}{cc}m & 2 \\ 3 & 6\end{array}\right]$, find the value of $m$.
(ii) Show that $\mathbf{X}^{3}-7 \mathbf{X}=n \mathbf{I}$, where $n$ is an integer and $\mathbf{I}$ is the $2 \times 2$ identity matrix.
(4 marks)
(b) It is given that $\mathbf{A}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
(i) Describe the geometrical transformation represented by $\mathbf{A}$.
(ii) The matrix $\mathbf{B}$ represents an anticlockwise rotation through $45^{\circ}$ about the origin.

Show that $\mathbf{B}=k\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$, where $k$ is a surd.
(iii) Find the image of the point $P(-1,2)$ under an anticlockwise rotation through $45^{\circ}$ about the origin, followed by the transformation represented by $\mathbf{A}$.

8 The diagram shows two triangles, $T_{1}$ and $T_{2}$.

(a) Find the matrix which represents the stretch that maps triangle $T_{1}$ onto triangle $T_{2}$. (2 marks)
(b) The triangle $T_{2}$ is reflected in the line $y=\sqrt{3} x$ to give a third triangle, $T_{3}$. Find, using surd forms where appropriate:
(i) the matrix which represents the reflection that maps triangle $T_{2}$ onto triangle $T_{3}$; (2 marks)
(ii) the matrix which represents the combined transformation that maps triangle $T_{1}$ onto triangle $T_{3}$.

