FP1: Matrices

Past Paper Questions 2006 - 2013

Name:

7 (a) The transformation T is defined by the matrix \mathbf{A} , where

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

(i) Describe the transformation T geometrically.

(2 marks)

(ii) Calculate the matrix product A^2 .

(2 marks)

(iii) Explain briefly why the transformation T followed by T is the identity transformation.

(1 mark)

(b) The matrix \mathbf{B} is defined by

$$\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

(i) Calculate $\mathbf{B}^2 - \mathbf{A}^2$.

(3 marks)

(ii) Calculate $(\mathbf{B} + \mathbf{A})(\mathbf{B} - \mathbf{A})$.

(3 marks)

June 2006

5 The matrix \mathbf{M} is defined by

$$\mathbf{M} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

(a) Find the matrix:

(i) M^2 ;

(3 marks)

(ii) \mathbf{M}^4 .

(1 mark)

(b) Describe fully the geometrical transformation represented by M.

(2 marks)

(c) Find the matrix M^{2006} .

(3 marks)

2 The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

(a) Calculate:

(i) $\mathbf{A} + \mathbf{B}$; (2 marks)

(ii) **BA**.

(b) Describe fully the geometrical transformation represented by each of the following matrices:

(i) **A**;

(ii) \mathbf{B} ;

(iii) BA. (2 marks)

June 2007

1 The matrices **A** and **B** are given by

$$\mathbf{A} = \begin{bmatrix} 2 & 1 \\ 3 & 8 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

The matrix $\mathbf{M} = \mathbf{A} - 2\mathbf{B}$.

(a) Show that $\mathbf{M} = n \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$, where *n* is a positive integer. (2 marks)

(b) The matrix M represents a combination of an enlargement of scale factor p and a reflection in a line L. State the value of p and write down the equation of L.

(2 marks)

(c) Show that

$$\mathbf{M}^2 = q\mathbf{I}$$

where q is an integer and I is the 2×2 identity matrix.

(2 marks)

6 The matrix M is defined by

$$\mathbf{M} = \begin{bmatrix} \sqrt{3} & 3 \\ 3 & -\sqrt{3} \end{bmatrix}$$

(a) (i) Show that

$$\mathbf{M}^2 = p\mathbf{I}$$

where p is an integer and I is the 2×2 identity matrix.

(3 marks)

(ii) Show that the matrix M can be written in the form

$$q\begin{bmatrix} \cos 60^{\circ} & \sin 60^{\circ} \\ \sin 60^{\circ} & -\cos 60^{\circ} \end{bmatrix}$$

where q is a real number. Give the value of q in surd form.

(3 marks)

(b) The matrix **M** represents a combination of an enlargement and a reflection.

Find:

(i) the scale factor of the enlargement;

(1 mark)

(ii) the equation of the mirror line of the reflection.

(1 mark)

(c) Describe fully the geometrical transformation represented by \mathbf{M}^4 .

(2 marks)

June 2008

6 The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

(a) Calculate the matrix **AB**.

(2 marks)

(b) Show that A^2 is of the form kI, where k is an integer and I is the 2 × 2 identity matrix. (2 marks)

(c) Show that $(\mathbf{A}\mathbf{B})^2 \neq \mathbf{A}^2\mathbf{B}^2$.

(3 marks)

5 The matrices **A** and **B** are defined by

$$\mathbf{A} = \begin{bmatrix} k & k \\ k & -k \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -k & k \\ k & k \end{bmatrix}$$

where k is a constant.

(a) Find, in terms of k:

(i)
$$\mathbf{A} + \mathbf{B}$$
; (1 mark)

(ii)
$$A^2$$
. (2 marks)

(b) Show that
$$(\mathbf{A} + \mathbf{B})^2 = \mathbf{A}^2 + \mathbf{B}^2$$
. (4 marks)

- (c) It is now given that k = 1.
 - (i) Describe the geometrical transformation represented by the matrix A^2 . (2 marks)
 - (ii) The matrix **A** represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection.

 (3 marks)

June 2009

- 7 (a) Using surd forms where appropriate, find the matrix which represents:
 - (i) a rotation about the origin through 30° anticlockwise; (2 marks)
 - (ii) a reflection in the line $y = \frac{1}{\sqrt{3}}x$. (2 marks)
 - **(b)** The matrix **A**, where

$$\mathbf{A} = \begin{bmatrix} 1 & \sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

represents a combination of an enlargement and a reflection. Find the scale factor of the enlargement and the equation of the mirror line of the reflection. (2 marks)

(c) The transformation represented by **A** is followed by the transformation represented by **B**, where

$$\mathbf{B} = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

Find the matrix of the combined transformation and give a full geometrical description of this combined transformation. (5 marks)

4 It is given that

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix}$$

and that I is the 2×2 identity matrix.

(a) Show that $(\mathbf{A} - \mathbf{I})^2 = k\mathbf{I}$ for some integer k. (3 marks)

(b) Given further that

$$\mathbf{B} = \begin{bmatrix} 1 & 3 \\ p & 1 \end{bmatrix}$$

find the integer p such that

$$(\mathbf{A} - \mathbf{B})^2 = (\mathbf{A} - \mathbf{I})^2 \tag{4 marks}$$

June 2010

6 The matrices A and B are defined by

$$\mathbf{A} = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Describe fully the geometrical transformation represented by each of the following matrices:

(b)
$$\mathbf{B}$$
; (2 marks)

(c)
$$A^2$$
; (2 marks)

(d)
$$\mathbf{B}^2$$
; (2 marks)

3	(a)	Write down the 2×2	matrix correst	onding to ea	ach of the	following	transformations
•	(α)	Willie down the 2 \times 2	matrix corres	Jonaing to C	ach of the	ionowing	ti alistottilations.

- (i) a rotation about the origin through 90° clockwise; (1 mark)
- (ii) a rotation about the origin through 180°. (1 mark)
- **(b)** The matrices **A** and **B** are defined by

$$\mathbf{A} = \begin{bmatrix} 2 & 4 \\ -1 & -3 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} -2 & 1 \\ -4 & 3 \end{bmatrix}$$

- (i) Calculate the matrix **AB**. (2 marks)
- (ii) Show that $(\mathbf{A} + \mathbf{B})^2 = k\mathbf{I}$, where \mathbf{I} is the identity matrix, for some integer k.
- (c) Describe the single geometrical transformation, or combination of two geometrical transformations, represented by each of the following matrices:
 - (i) $\mathbf{A} + \mathbf{B}$; (2 marks)
 - (ii) $(\mathbf{A} + \mathbf{B})^2$; (2 marks)
 - (iii) $(\mathbf{A} + \mathbf{B})^4$.

June 2011

7 The matrix **A** is defined by

$$\mathbf{A} = \begin{bmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{bmatrix}$$

- (a) (i) Calculate the matrix A^2 . (2 marks)
 - (ii) Show that $A^3 = kI$, where k is an integer and I is the 2 × 2 identity matrix. (2 marks)
- (b) Describe the single geometrical transformation, or combination of two geometrical transformations, corresponding to each of the matrices:
 - (i) A^3 ; (2 marks)
 - (ii) \mathbf{A} . (3 marks)

- The diagram below shows a rectangle R_1 which has vertices (0, 0), (3, 0), (3, 2) and (0, 2).
 - (a) On the diagram, draw:
 - (i) the image R_2 of R_1 under a rotation through 90° clockwise about the origin; (1 mark)
 - (ii) the image R_3 of R_2 under the transformation which has matrix

$$\begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$
 (3 marks)

- **(b)** Find the matrix of:
 - (i) the rotation which maps R_1 onto R_2 ; (1 mark)
 - (ii) the combined transformation which maps R_1 onto R_3 . (3 marks)

- 6 (a) Using surd forms, find the matrix of a rotation about the origin through 135° anticlockwise. (2 marks)
 - **(b)** The matrix **M** is defined by $\mathbf{M} = \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix}$.
 - (i) Given that M represents an enlargement followed by a rotation, find the scale factor of the enlargement and the angle of the rotation. (3 marks)
 - (ii) The matrix M^2 also represents an enlargement followed by a rotation. State the scale factor of the enlargement and the angle of the rotation. (2 marks)
 - (iii) Show that $\mathbf{M}^4 = k\mathbf{I}$, where k is an integer and I is the 2 × 2 identity matrix.

 (2 marks)
 - (iv) Deduce that $\mathbf{M}^{2012} = -2^n \mathbf{I}$ for some positive integer n. (2 marks)

January 2013

- **6 (a)** The matrix **X** is defined by $\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$.
 - (i) Given that $\mathbf{X}^2 = \begin{bmatrix} m & 2 \\ 3 & 6 \end{bmatrix}$, find the value of m. (1 mark)
 - (ii) Show that $X^3 7X = nI$, where *n* is an integer and I is the 2 × 2 identity matrix. (4 marks)
 - **(b)** It is given that $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.
 - (i) Describe the geometrical transformation represented by **A**. (1 mark)
 - (ii) The matrix $\bf B$ represents an anticlockwise rotation through 45° about the origin.

Show that
$$\mathbf{B} = k \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
, where k is a surd. (2 marks)

(iii) Find the image of the point P(-1, 2) under an anticlockwise rotation through 45° about the origin, followed by the transformation represented by **A**. (4 marks)

8 The diagram shows two triangles, T_1 and T_2 .

- (a) Find the matrix which represents the stretch that maps triangle T_1 onto triangle T_2 .

 (2 marks)
- (b) The triangle T_2 is reflected in the line $y = \sqrt{3}x$ to give a third triangle, T_3 . Find, using surd forms where appropriate:
 - (i) the matrix which represents the reflection that maps triangle T_2 onto triangle T_3 ; (2 marks)
 - (ii) the matrix which represents the combined transformation that maps triangle T_1 onto triangle T_3 . (2 marks)