FP4: Determinants

Past Paper Questions 2006 - 2013

Name:

January 2006

(a)

Show that

6

 $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ bc & ca & ab \end{vmatrix} = (a-b)(b-c)(c-a)$ (5 marks)

(b) (i) Hence, or otherwise, show that the system of equations

x + y + z = p 3x + 3y + 5z = q15x + 15y + 9z = r

has no unique solution whatever the values of p, q and r. (2 marks)

(ii) Verify that this system is consistent when 24p - 3q - r = 0. (2 marks)

(iii) Find the solution of the system in the case where p = 1, q = 8 and r = 0. (5 marks)

June 2006

3	Express the determinant $\begin{vmatrix} 1 & a^2 & bc \\ 1 & b^2 & ca \\ 1 & c^2 & ab \end{vmatrix}$ as the product of four linear factors.	(6 marks)				
January 2007						
2	(a) Show that $(a - b)$ is a factor of the determinant					
	$\Delta = \begin{vmatrix} a & b & c \\ b+c & c+a & a+b \\ bc & ca & ab \end{vmatrix}$	(2 marks)				
	(b) Factorise Δ completely into linear factors.	(5 marks)				
June 2007						
2	Factorise completely the determinant $\begin{vmatrix} y & x & x+y-1 \\ x & y & 1 \\ y+1 & x+1 & 2 \end{vmatrix}$.	(6 marks)				
June 2008						
8	By considering the determinant					
	$\begin{vmatrix} x & y & z \\ z & x & y \\ y & z & x \end{vmatrix}$					
	show that $(x + y + z)$ is a factor of $x^3 + y^3 + z^3 - kxyz$ for some value of the cobe determined.	onstant k to (3 marks)				

January 2009

5 (a) Expand the determinant $D = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ z & x & y \end{vmatrix}$ (2 marks) (b) Show that (x + y + z) is a factor of the determinant $\Delta = \begin{vmatrix} x & y & z \\ y - z & z - x & x - y \\ x + z & y + x & z + y \end{vmatrix}$ (2 marks) Show that $\Delta = k(x + y + z)D$ for some integer k. (c) (3 marks) June 2009 Matrix $\mathbf{M} = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$. Without attempting to factorise, expand fully det \mathbf{M} . 8 (a) (2 marks) (b) Matrix $\mathbf{N} = \begin{bmatrix} d & e & f \\ f & d & e \\ e & f & d \end{bmatrix}$. Find the product matrix **MN**. (3 marks) (c) Prove that the product $(a^{3} + b^{3} + c^{3} - 3abc)(d^{3} + e^{3} + f^{3} - 3def)$ can be written in the form $x^3 + y^3 + z^3 - 3xyz$, stating clearly each of x, y and z in terms of a, b, c, d, e and f. (2 marks)

January 2010

7 (a) It is given that
$$\Delta = \begin{vmatrix} 16-q & 5 & 7 \\ -12 & -1-q & -7 \\ 6 & 6 & 10-q \end{vmatrix}$$
.
(i) By using row operations on the first two rows of Δ , show that $(4-q)$ is a factor of Δ .
(ii) Express Δ as the product of three linear factors.
(4 marks)
(b) It is given that $\mathbf{M} = \begin{bmatrix} 16 & 5 & 7 \\ -12 & -1 & -7 \\ 6 & 6 & 10 \end{bmatrix}$.
(i) Verify that $\begin{bmatrix} 2 \\ 5 \\ -7 \end{bmatrix}$ is an eigenvector of \mathbf{M} and state its corresponding eigenvalue.
(3 marks)
(ii) For each of the other two eigenvalues of \mathbf{M} , find a corresponding eigenvector.
(7 marks)
(c) The transformation T has matrix \mathbf{M} . Write down cartesian equations for any one of the invariant lines of T.
June 2010

5 Factorise fully the determinant $\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ yz & zx & xy \end{vmatrix}$.
--

January 2011

1	Let $\Delta = \begin{vmatrix} 1 & 2 & 3 \\ x & y & z \\ y+z & z+x & x+y \end{vmatrix}$.	
(a)	Use a row operation to show that $(x + y + z)$ is a factor of Δ .	(2 marks)
(b)	Hence, or otherwise, express Δ as a product of linear factors.	(2 marks)

June 2011		
7	Let $\Delta = \begin{vmatrix} n(n+1) & n+1 & -1 \\ 0 & 1 & n \\ 1 & -(n+1) & 1 \end{vmatrix}$.	
(a) (i)	Show that $(n^2 + n + 1)$ is a factor of Δ .	(2 marks)
(ii)	Hence, or otherwise, express Δ in factorised form.	(2 marks)
(b)	By expanding Δ directly, show that	
	$\Delta = [n(n+1)]^2 + f(n)$	
	where $f(n)$ can be expressed as the sum of two squares.	(2 marks)
(c)	Hence express the number 12321 as the sum of three squares.	(2 marks)
June 2012		
3	Let $\Delta = \begin{vmatrix} yz & xz & xy \\ x & y & z \\ x^2 & -y^2 & z^2 \end{vmatrix}$.	
(a)	Show that $(y+z)$ is a factor of Δ .	(2 marks)
(b)	Factorise Δ as completely as possible.	(4 marks)
January 2013	3	
2	It is given that A and B are 3×3 matrices such that	
	$det(\mathbf{AB}) = 24$ and $det(\mathbf{A}^{-1}) = -3$	
(a)	State the value of det A.	(1 mark)
(b)	A three-dimensional shape S, with volume 20 cm^3 , is transformed using m	natrix B .
	Find the volume of the image of S.	(3 marks)
June 2013		
3	The determinant Δ is given by	
	$\Delta = \begin{vmatrix} x^2 - x & y^2 - y & z^2 - z \\ x & y & z \\ x^2 + y^2 + z^2 & x^2 + y^2 + z^2 & x^2 + y^2 + z^2 \end{vmatrix}$	
	where x , y and z are distinct real numbers.	
<mark>(</mark> a)	Express Δ as a product of one quadratic factor and three linear factors.	(6 marks)
(b)	Deduce that $\Delta \neq 0$.	(2 marks)