Core 3: Functions

Past Paper Questions 2006 - 2013

Name:

8	The	The functions f and g are defined with their respective domains by			
			$\mathbf{f}(x) = x^2$	for all real values of x	
			$g(x) = \frac{1}{x+2}$	for real values of x , $x \neq -2$	
	(a)	State	the range of f.		(1 mark)
	(b)	(i)	Find $fg(x)$.		(1 mark)
		(ii)	Solve the equation $fg(x) = 4$.		(4 marks)
	(c)	(i)	Explain why the function f doe	s not have an inverse.	(1 mark)
		(ii)	The inverse of g is g^{-1} . Find	$g^{-1}(x)$.	(3 marks)

June 2006

4	(a)	Sketch and label on the same set of axes the graphs of:	
		(i) $y = x ;$	(1 mark)
		(ii) $y = 2x - 4 $.	(2 marks)
	(b)	(i) Solve the equation $ x = 2x - 4 $.	(3 marks)
		(ii) Hence, or otherwise, solve the inequality $ x > 2x - 4 $.	(2 marks)

8 A function f is defined by $f(x) = 2e^{3x} - 1$ for all real values of x.

(a) Find the range of f.(2 marks)(b) Show that $f^{-1}(x) = \frac{1}{3} \ln\left(\frac{x+1}{2}\right)$.(3 marks)(c) Find the gradient of the curve $y = f^{-1}(x)$ when x = 0.(4 marks)

3	The functions f and g are defined with their respective dor	nains by
	$f(x) = 3 - x^2$, for all real values of	f x
	$g(x) = \frac{2}{x+1}$, for real values of x,	$x \neq -1$
	(a) Find the range of f.	(2 marks)
	(b) The inverse of g is g^{-1} .	
	(i) Find $g^{-1}(x)$.	(3 marks)
	(ii) State the range of g^{-1} .	(1 mark)
	(c) The composite function gf is denoted by h.	
	(i) Find $h(x)$, simplifying your answer.	(2 marks)
	(ii) State the greatest possible domain of h.	(1 mark)

7	(a)	Sketch the graph of $y = 2x $.	(1 mark)
	(b)	On a separate diagram, sketch the graph of $y = 4 - 2x $, indicating the coord the points where the graph crosses the coordinate axes.	dinates of <i>(3 marks)</i>
	(c)	Solve $4 - 2x = x$.	(3 marks)
	(d)	Hence, or otherwise, solve the inequality $4 - 2x > x$.	(2 marks)

5	The functions f and g are defined with their respective domains by	
	$f(x) = \sqrt{x-2} \text{for } x \ge 2$	
	$g(x) = \frac{1}{x}$ for real values of x, $x \neq 0$	
	(a) State the range of f.	(2 marks)
	(b) (i) Find $fg(x)$.	(1 mark)
	(ii) Solve the equation $fg(x) = 1$.	(3 marks)
	(c) The inverse of f is f^{-1} . Find $f^{-1}(x)$.	(3 marks)

4	The	functi	ons f and g are defined with their respective domains by	
			$f(x) = x^3$, for all real values of x	
			$g(x) = \frac{1}{x-3}$, for real values of $x, x \neq 3$	
	(a)	State	e the range of f.	(1 mark)
	(b)	(i)	Find $fg(x)$.	(1 mark)
		(ii)	Solve the equation $fg(x) = 64$.	(3 marks)
	(c)	(i)	The inverse of g is g^{-1} . Find $g^{-1}(x)$.	(3 marks)
		(ii)	State the range of g^{-1} .	(1 mark)
7	(a)		ribe a sequence of two geometrical transformations that maps the graph the graph of $y = 4x^2 - 5$.	n of $y = x^2$ (4 marks)

onto the graph of y = 4x² - 5. (4 marks)
(b) Sketch the graph of y = |4x² - 5|, indicating the coordinates of the point where the curve crosses the y-axis. (3 marks)

- (c) (i) Solve the equation $|4x^2 5| = 4$. (3 marks)
 - (ii) Hence, or otherwise, solve the inequality $|4x^2 5| \ge 4$. (2 marks)

4	The functions f and g are defined with their respective domains by	
	$f(x) = x^2$, for all real values of x	
	$g(x) = \frac{1}{2x - 3}$, for real values of $x, x \neq \frac{3}{2}$	
	(a) State the range of f.	(1 mark)
	(b) (i) The inverse of g is g^{-1} . Find $g^{-1}(x)$.	(3 marks)
	(ii) State the range of g^{-1} .	(1 mark)
	(c) Solve the equation $fg(x) = 9$.	(3 marks)

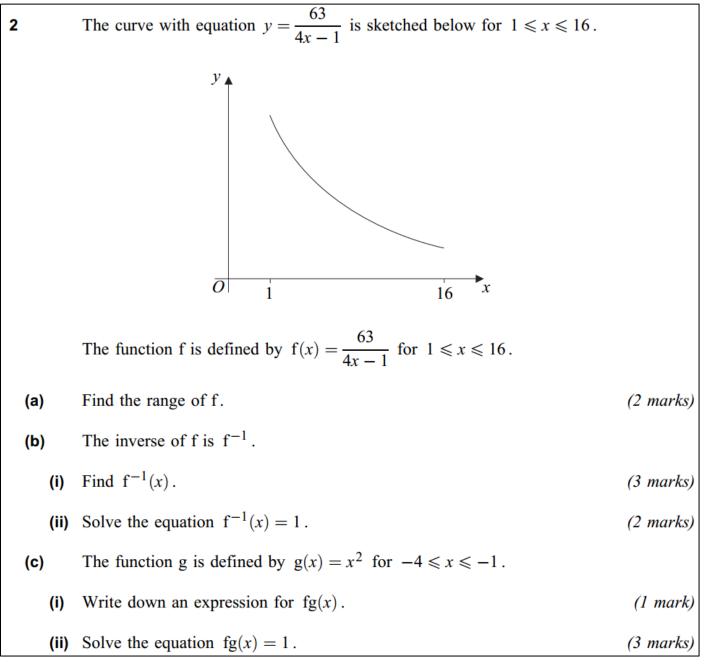
5	The	The functions f and g are defined with their respective domains by			
			$\mathbf{f}(x) = 2 - x^4$	for all real values of x	
			$g(x) = \frac{1}{x-4}$	for real values of $x, x \neq 4$	
	(a)	State	e the range of f.		(2 marks)
	(b)	Expl	ain why the function f does	not have an inverse.	(1 mark)
	(c)	(i)	Write down an expression t	for $fg(x)$.	(1 mark)
		(ii)	Solve the equation $fg(x) =$	-14.	(3 marks)

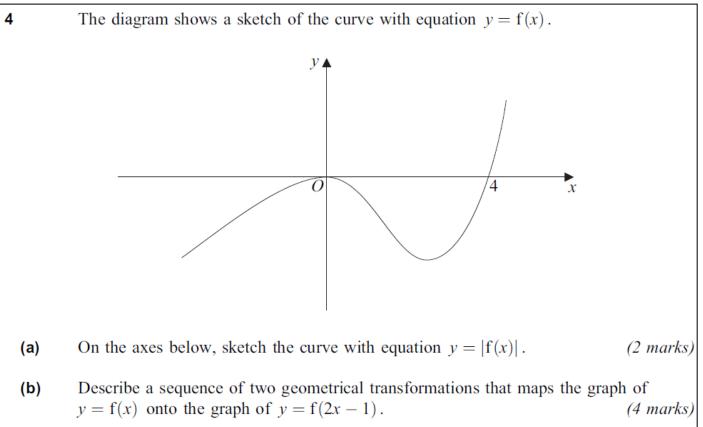
2	The functions f and g are defined with their respective domains by	
	$f(x) = \sqrt{2x+5}$, for real values of $x, x \ge -2.5$	
	$g(x) = \frac{1}{4x+1}$, for real values of $x, x \neq -0.25$	
	(a) Find the range of f.	(2 marks)
	(b) The inverse of f is f^{-1} .	
	(i) Find $f^{-1}(x)$.	(3 marks)
	(ii) State the domain of f^{-1} .	(1 mark)
	(c) The composite function fg is denoted by h.	
	(i) Find an expression for $h(x)$.	(1 mark)
	(ii) Solve the equation $h(x) = 3$.	(3 marks)

4	(a)	Sketch the graph of $y = 50 - x^2 $, indicating the coordinates of the point wh graph crosses the y-axis.		
	(b)	Solve the equation $ 50 - x^2 = 14$.	(3 marks)	
	(c)	Hence, or otherwise, solve the inequality $ 50 - x^2 > 14$.	(2 marks)	
	(d)	Describe a sequence of two geometrical transformations that maps the graph onto the graph of $y = 50 - x^2$.	of $y = x^2$ (4 marks)	

4	(a)	Sketch the graph of $y = 8 - 2x $.	(2 marks)
	(b)	Solve the equation $ 8 - 2x = 4$.	(2 marks)
	(c)	Solve the inequality $ 8 - 2x > 4$.	(2 marks)

6	The fu	nctions f and g are defined with their respective domains by	
		$f(x) = e^{2x} - 3$, for all real values of x	
		$g(x) = \frac{1}{3x+4}$, for real values of $x, x \neq -\frac{4}{3}$	
	(a)]	Find the range of f.	(2 marks)
	(b) ⁷	The inverse of f is f^{-1} .	
		(i) Find $f^{-1}(x)$.	(3 marks)
		(ii) Solve the equation $f^{-1}(x) = 0$.	(2 marks)
	(c)	(i) Find an expression for $gf(x)$.	(1 mark)
		(ii) Solve the equation $gf(x) = 1$, giving your answer in an exact form.	(3 marks)

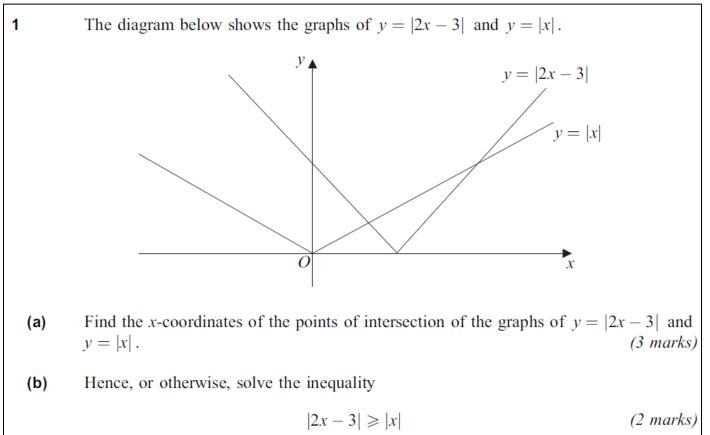

January 2011

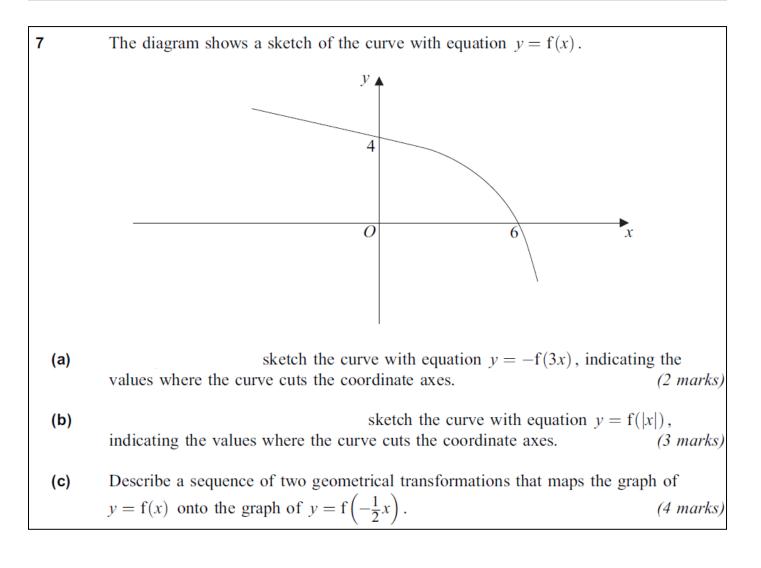

4	The functions f and g are defined with their respective domains by		
	$f(x) = 3\cos\frac{1}{2}x$, for $0 \le x \le 2\pi$		
	g(x) = x , for all real values of x		
(a)	Find the range of f.	(2 marks)	
(b)	The inverse of f is f^{-1} .		
(i)	Find $f^{-1}(x)$.	(3 marks)	
(ii)	Solve the equation $f^{-1}(x) = 1$, giving your answer in an exact form.	(2 marks)	
(c) (i)	Write down an expression for $gf(x)$.	(1 mark)	
(ii)	Sketch the graph of $y = gf(x)$ for $0 \le x \le 2\pi$.	(3 marks)	
(d)	Describe a sequence of two geometrical transformations that maps the graph of		
	$y = \cos x$ onto the graph of $y = 3\cos\frac{1}{2}x$.	(3 marks)	

0C 2011		
5	The functions f and g are defined with their respective domains by	
	$f(x) = x^2$ for all real values of x	
	$g(x) = \frac{1}{2x+1}$ for real values of x, $x \neq -0.5$	
(a)	Explain why f does not have an inverse.	(1 mark)
(b)	The inverse of g is g^{-1} . Find $g^{-1}(x)$.	(3 marks)
(c)	State the range of g^{-1} .	(1 mark)
(d)	Solve the equation $fg(x) = g(x)$.	(3 marks)
7 (a)	On separate diagrams:	
(i)	sketch the curve with equation $y = 3x + 3 $;	(2 marks)
(ii)	sketch the curve with equation $y = x^2 - 1 $.	(3 marks)
(b) (i)	Solve the equation $ 3x + 3 = x^2 - 1 $.	(5 marks)

(ii) Hence solve the inequality $|3x+3| < |x^2-1|$. (2 marks)

5	The functions f and g are defined with their respective domains by	
	$f(x) = \sqrt{2x - 5}, \text{for } x \ge 2.5$	
	$g(x) = \frac{10}{x}$, for real values of $x, x \neq 0$	
(a)	State the range of f.	(2 marks)
(b) (i)	Find $fg(x)$.	(1 mark)
(ii)	Solve the equation $fg(x) = 5$.	(2 marks)
(c)	The inverse of f is f^{-1} .	
(i)	Find $f^{-1}(x)$.	(3 marks)
(ii)	Solve the equation $f^{-1}(x) = 7$.	(2 marks)





5 The function f is defined by $f(x) = \frac{x^2 - 4}{3}$, for real values of x, where $x \le 0$ (2 marks) (a) State the range of f. The inverse of f is f^{-1} . (b) Write down the domain of f^{-1} . (1 mark) (i) Find an expression for $f^{-1}(x)$. (ii) (3 marks) The function g is defined by (c) $g(x) = \ln |3x - 1|$, for real values of x, where $x \neq \frac{1}{3}$ The curve with equation y = g(x) is sketched below. y I 0 x The curve y = g(x) intersects the x-axis at the origin and at the point P. (i) Find the *x*-coordinate of *P*. (2 marks) (ii) State whether the function g has an inverse. Give a reason for your answer. (1 mark) (iii) Show that $gf(x) = \ln |x^2 - k|$, stating the value of the constant k. (2 marks)

(4 marks)

(iv) Solve the equation gf(x) = 0.

