Core 4: Implicit Differentiation

Past Paper Questions 2006 - 2013

Name:

June 2006

5	5 A curve is defined by the equation					
			$y^2 - xy + 3x^2 - 5 = 0$			
	(a)	Find	the y-coordinates of the two points on the curve where $x = 1$.	(3 marks)		
	(b)	(i)	Show that $\frac{dy}{dx} = \frac{y - 6x}{2y - x}$.	(6 marks)		
		(ii)	Find the gradient of the curve at each of the points where $x = 1$.	(2 marks)		
		(iii)	Show that, at the two stationary points on the curve, $33x^2 - 5 = 0$.	(3 marks)		

5	The point $P(1,a)$, where $a > 0$, lies on the curve $y + 4x = 5x^2y^2$.	
	(a) Show that $a = 1$.	(2 marks)
	(b) Find the gradient of the curve at <i>P</i> .	(7 marks)
	(c) Find an equation of the tangent to the curve at P .	(1 mark)

January 2008

6 A curve has equation $3xy - 2y^2 = 4$. Find the gradient of the curve at the point (2, 1). (5 marks)

January 2009

6	A curve is defined by the equation $x^2y + y^3 = 2x + 1$.	
	(a) Find the gradient of the curve at the point (2, 1).	(6 marks)
	(b) Show that the <i>x</i> -coordinate of any stationary point on this curve satisfies the	he equation
	$\frac{1}{x^3} = x + 1$	(4 marks)

June 2009

5	A	curve	is	defined	by	the equation	$4x^2$	$+y^{2}$	= 4	+3xy.
---	---	-------	----	---------	----	--------------	--------	----------	-----	-------

Find the gradient at the point (1, 3) on this curve.

(5 marks)

January 2010

5 A curve is defined by the equation

$$x^2 + xy = e^y$$

Find the gradient at the point (-1, 0) on this curve.

June 2010

6	A curve has equation $x^3y + \cos(\pi y) = 7$.	
(a)	Find the exact value of the x-coordinate at the point on the curve where $y = 1$. (2 marks))
(b)	Find the gradient of the curve at the point where $y = 1$. (5 marks))

June 2011

6	A curve is defined by the equation $2y + e^{2x}y^2 = x^2 + C$, where C is a constant	ant.
	The point $P\left(1, \frac{1}{e}\right)$ lies on the curve.	
(a)	Find the exact value of C.	(1 mark)
(b)	Find an expression for $\frac{dy}{dx}$ in terms of x and y. (7 marks)
(c)	Verify that $P\left(1, \frac{1}{e}\right)$ is a stationary point on the curve. (2)	2 marks)

June 2012

6	A curve is defined by the equation $9x^2 - 6xy + 4y^2 = 3$.	
	Find the coordinates of the two stationary points of this curve.	(8 marks)

January 2013

4 (a)	A curve is defined by the equation $x^2 - y^2 = 8$.
(i)	Show that at any point (p, q) on the curve, where $q \neq 0$, the gradient of the curve is
	given by $\frac{dy}{dx} = \frac{p}{q}$. (2 marks)
(ii)	Show that the tangents at the points (p, q) and $(p, -q)$ intersect on the x-axis. (4 marks)

(5 marks)