Core 3: Integration

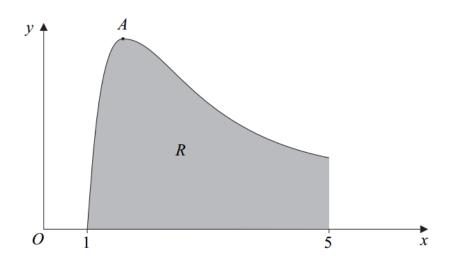
Past Paper Questions 2006 - 2013

Name:

Integration

(+ constant; $a > 0$ where relevant)			
$\mathbf{f}(\mathbf{x})$	$\int \mathbf{f}(x) \mathrm{d}x$		
tan x	$\ln \sec x $		
$\cot x$	$\ln \sin x $		
cosec x	$-\ln\left \operatorname{cosec} x + \operatorname{cot} x\right = \ln\left \tan(\frac{1}{2}x)\right $		
sec x	$\ln \sec x + \tan x = \ln \tan(\frac{1}{2}x + \frac{1}{4}\pi) $		
$\sec^2 kx$	$\frac{1}{k} \tan kx$		
sinh <i>x</i>	$\cosh x$		
$\cosh x$	sinh x		
tanh <i>x</i>	$\ln \cosh x$		
$\frac{1}{\sqrt{a^2 - x^2}}$ $\frac{1}{a^2 + x^2}$	$\sin^{-1}\left(\frac{x}{a}\right) (x < a)$ $\frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right)$		
$\frac{a^2 + x^2}{\sqrt{x^2 - a^2}}$	a (a) $\cosh^{-1}\left(\frac{x}{a}\right) \text{ or } \ln\left\{x + \sqrt{x^2 - a^2}\right\} (x > a)$		
$\frac{1}{\sqrt{a^2 + x^2}}$	$\sinh^{-1}\left(\frac{x}{a}\right)$ or $\ln\left\{x + \sqrt{x^2 + a^2}\right\}$		
$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln\left \frac{a+x}{a-x}\right = \frac{1}{a}\tanh^{-1}\left(\frac{x}{a}\right) \qquad (x < a)$		
$\frac{1}{x^2 - a^2}$	$\frac{1}{2a} \ln \left \frac{x-a}{x+a} \right $		
$\int u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x = uv - \int v \frac{\mathrm{d}v}{\mathrm{d}x}$	$\frac{du}{dx}$ dx		

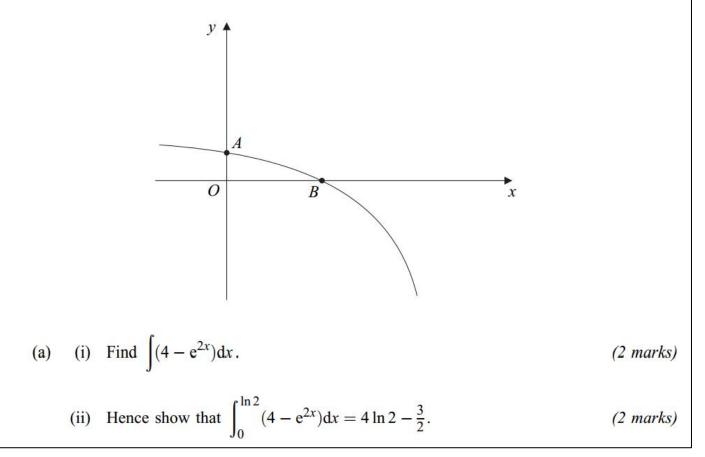
3 (a) (i) Given that
$$f(x) = x^4 + 2x$$
, find $f'(x)$. (1 mark)
(ii) Hence, or otherwise, find $\int \frac{2x^3 + 1}{x^4 + 2x} dx$. (2 marks)


(b) (i) Use the substitution u = 2x + 1 to show that

$$\int x\sqrt{2x+1} \, \mathrm{d}x = \frac{1}{4} \int \left(u^{\frac{3}{2}} - u^{\frac{1}{2}}\right) \mathrm{d}u \tag{3 marks}$$

(ii) Hence show that $\int_0^4 x\sqrt{2x+1} \, dx = 19.9$ correct to three significant figures. (4 marks)

9 (a) Given that $y = x^{-2} \ln x$, show that $\frac{dy}{dx} = \frac{1 - 2 \ln x}{x^3}$. (4 marks) (b) Using integration by parts, find $\int x^{-2} \ln x \, dx$. (4 marks)


(c) The sketch shows the graph of $y = x^{-2} \ln x$.

- (i) Using the answer to part (a), find, in terms of e, the *x*-coordinate of the stationary point *A*. (2 marks)
- (ii) The region R is bounded by the curve, the x-axis and the line x = 5. Using your answer to part (b), show that the area of R is

$$\frac{1}{5}(4 - \ln 5) \tag{3 marks}$$

2	Use the substitution $u = 2x + 1$ to find $\int x(2x + 1)^8 dx$, giving your answe	er in terms		
	of x.	(4 marks)		
6	(i) Given that $y = x \ln x$, find $\frac{dy}{dx}$.	(2 marks)		
	(ii) Hence, or otherwise, find $\int \ln x dx$.	(2 marks)		
	(iii) Find the exact value of $\int_{1}^{5} \ln x dx$.	(2 marks)		
January 2007				
4	(a) Use integration by parts to find $\int x \sin x dx$.	(4 marks)		
	(b) Using the substitution $u = x^2 + 5$, or otherwise, find $\int x\sqrt{x^2 + 5} dx$.	(4 marks)		
9	The sketch shows the graph of $y = 4 - e^{2x}$. The curve crosses the y-axis at the the x-axis at the point B.	point A and		

6 (a) Use integration by parts to find
$$\int xe^{5x} dx$$
. (4 marks)
(b) (i) Use the substitution $u = \sqrt{x}$ to show that
 $\int \frac{1}{\sqrt{x}(1+\sqrt{x})} dx = \int \frac{2}{1+u} du$ (2 marks)
(ii) Find the exact value of $\int_{1}^{9} \frac{1}{\sqrt{x}(1+\sqrt{x})} dx$. (3 marks)

8 (a) Write down
$$\int \sec^2 x \, dx$$
. (1 mark)
(b) Given that $y = \frac{\cos x}{\sin x}$, use the quotient rule to show that $\frac{dy}{dx} = -\csc^2 x$. (4 marks)
(c) Prove the identity $(\tan x + \cot x)^2 = \sec^2 x + \csc^2 x$. (3 marks)
(d) Hence find $\int_{0.5}^{1} (\tan x + \cot x)^2 \, dx$, giving your answer to two significant figures.
(4 marks)

January 2008

5 (a) (i) Given that
$$y = 2x^2 - 8x + 3$$
, find $\frac{dy}{dx}$. (1 mark)
(ii) Hence, or otherwise, find

$$\int_{4}^{6} \frac{x-2}{2x^2 - 8x + 3} dx$$
giving your answer in the form $k \ln 3$, where k is a rational number. (4 marks)
(b) Use the substitution $u = 3x - 1$ to find $\int x\sqrt{3x - 1} dx$, giving your answer in terms
of x . (4 marks)

8 (a) Given that
$$e^{-2x} = 3$$
, find the exact value of x. (2 marks)
(b) Use integration by parts to find $\int xe^{-2x} dx$. (4 marks)

June 2008

3 Use integration by parts to find $\int_0^{0.5} x \cos 2x \, dx$, giving your answer to three significant figures. (5 marks)

7 Use the substitution
$$x = \sin \theta$$
 to find $\int \frac{1}{(1-x^2)^{\frac{3}{2}}} dx$, giving your answer in terms of x.
(5 marks)

January 2009

9	(i)	Use the substitution $u = 4x - 3$ to find $\int \frac{4x}{4x - 3} dx$, giving your answer in terms of x. (4 marks)
	(ii)	By using integration by parts, or otherwise, find $\int \ln(4x - 3) dx$. (4 marks)

June 2009

7 (a) Use integration by parts to find
$$\int (t-1) \ln t \, dt$$
. (4 marks)
(b) Use the substitution $t = 2x + 1$ to show that $\int 4x \ln(2x+1) \, dx$ can be written as
 $\int (t-1) \ln t \, dt$. (3 marks)
(c) Hence find the exact value of $\int_0^1 4x \ln(2x+1) \, dx$. (3 marks)

January 2010

8 (a) Using integration by parts, find
$$\int x \sin(2x-1) dx$$
. (5 marks)
(b) Use the substitution $u = 2x - 1$ to find $\int \frac{x^2}{2x-1} dx$, giving your answer in terms of x.
(6 marks)

7 (a)Use integration by parts to find:(i)
$$\int x \cos 4x \, dx$$
;(4 marks)(ii) $\int x^2 \sin 4x \, dx$.(4 marks)

January 2011

6 (a)	Use the substitution $u = 3x + 1$ to find the exact value of $\int_0^1 x\sqrt{3x + 1} dx$.	
		(6 marks)

5 (a) Find
$$\int \frac{1}{3+2x} dx$$
. (2 marks)
(b) By using integration by parts, find $\int x \sin \frac{x}{2} dx$. (4 marks)

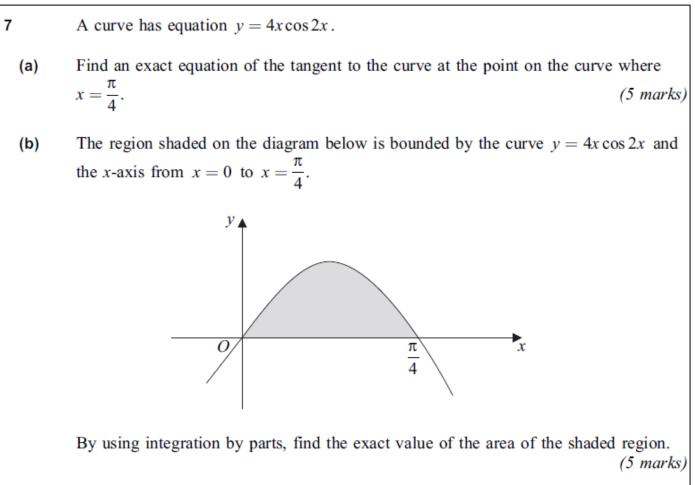
June 2011

8	Use the substitution $u = 1 + 2 \tan x$ to find	
	$\int \frac{1}{\left(1+2\tan x\right)^2\cos^2 x} \mathrm{d}x$	(5 marks)

9 (a)	Use integration by parts to find	$x \ln x \mathrm{d}x$.	(3 marks)	
-------	----------------------------------	--------------------------	-----------	--

January 2012

3 (a) Given that
$$y = 4x^3 - 6x + 1$$
, find $\frac{dy}{dx}$. (1 mark)
(b) Hence find $\int_2^3 \frac{2x^2 - 1}{4x^3 - 6x + 1} dx$, giving your answer in the form $p \ln q$, where p and q are rational numbers. (5 marks)


6 (a) Given that $x = \frac{1}{\sin \theta}$, use the quotient rule to show that $\frac{dx}{d\theta} = -\csc \theta \cot \theta$. (3 marks) (b) Use the substitution $x = \csc \theta$ to find $\int_{\sqrt{2}}^{2} \frac{1}{x^2 \sqrt{x^2 - 1}} dx$, giving your answer to three significant figures. (9 marks)

June 2012

Г

4	(a) By using integration by parts, find	$\int x e^{6x} dx.$	(4 marks)
---	---	---------------------	-----------

6	Use the substitution $u = x^4 + 2$ to find the value of $\int_0^1 \frac{x^7}{(x^4 + 2)^2} dx$, giving you	
	answer in the form $p \ln q + r$, where p, q and r are rational numbers. (6 me	irks)

8 (a) Show that

$$\int_{0}^{\ln 2} e^{1-2x} dx = \frac{3}{8}e$$
(4 marks)
(b) Use the substitution $u = \tan x$ to find the exact value of

$$\int_{0}^{\frac{\pi}{4}} \sec^{4} x \sqrt{\tan x} dx$$
(8 marks)

June 2013

10 (a) (i)	By writing $\ln x$ as $(\ln x) \times 1$, use integration by parts to find $\int \ln x dx$	c. (4 marks)
(ii)	Find $\int (\ln x)^2 dx$.	(4 marks)
(b)	Use the substitution $u = \sqrt{x}$ to find the exact value of	
	$\int_{1}^{4} \frac{1}{x + \sqrt{x}} \mathrm{d}x$	(7 marks)