M3: Dimension Analysis

Past Paper Questions 2006 - 2013

Name:

The time T taken for a simple pendulum to make a single small oscillation is thought to 1 depend only on its length l, its mass m and the acceleration due to gravity g.

By using dimensional analysis:

- (a) show that T does **not** depend on m; (3 marks)
- (b) express T in terms of l, g and k, where k is a dimensionless constant. (4 marks)

June 2007

The magnitude of the gravitational force, F, between two planets of masses m_1 and m_2 with 1 centres at a distance x apart is given by

$$F = \frac{Gm_1m_2}{x^2}$$

where G is a constant.

- (a) By using dimensional analysis, find the dimensions of G. (3 marks)
- (b) The lifetime, t, of a planet is thought to depend on its mass, m, its initial radius, R, the constant G and a dimensionless constant, k, so that

$$t = km^{\alpha} R^{\beta} G^{\beta}$$

where α , β and γ are constants.

Find the values of α , β and γ .

June 2008

The speed, vms^{-1} , of a wave travelling along the surface of a sea is believed to depend on 1 the depth of the sea, d m,

the density of the water, $\rho \, \text{kg} \, \text{m}^{-3}$, the acceleration due to gravity, g, and a dimensionless constant, k

so that

$$v = kd^{\alpha}\rho^{\beta}g^{\gamma}$$

where α , β and γ are constants.

By using dimensional analysis, show that $\beta = 0$ and find the values of α and γ . (6 marks)

(5 marks)

June 2009

1 A ball of mass m is travelling vertically downwards with speed u when it hits a horizontal floor. The ball bounces vertically upwards to a height h.

It is thought that h depends on m, u, the acceleration due to gravity g, and a dimensionless constant k, such that

$$h = km^{\alpha}u^{\beta}g^{\gamma}$$

where α , β and γ are constants.

By using dimensional analysis, find the values of α , β and γ . (5 marks)

June 2010

1	A tank containing a liquid has a small hole in the bottom through which the liquid escapes. The speed, $u \mathrm{m}\mathrm{s}^{-1}$, at which the liquid escapes is given by
	$u = CV \rho g$
	where $V \text{ m}^3$ is the volume of the liquid in the tank, $\rho \text{ kg m}^{-3}$ is the density of the liquid, g is the acceleration due to gravity and C is a constant.
	By using dimensional analysis, find the dimensions of C . (5 marks)

June 2011

2	The time, t , for a single vibration of a piece of taut string is believed	to depend on
	the length of the taut string, l , the tension in the string, F , the mass per unit length of the string, q , and a dimensionless constant, k ,	
	such that	
	$t = k l^{\alpha} F^{\beta} q^{\gamma}$	
	where α , β and γ are constants.	
	By using dimensional analysis, find the values of α , β and γ .	(5 marks)

June 2012

2	A pile driver of mass m_1 falls from a height h onto a pile of mass m_2 , driving the pile a distance s into the ground. The pile driver remains in contact with the pile after the impact. A resistance force R opposes the motion of the pile into the ground.		
	Elizabeth finds an expression for R as		
	$R = \frac{g}{s} \left[s(m_1 + m_2) + \frac{h(m_1)^2}{m_1 + m_2} \right]$		
	where g is the acceleration due to gravity.		
	Determine whether the expression is dimensionally consistent. (4 marks)		
June 2013			
2	A car has mass <i>m</i> and travels up a slope which is inclined at an angle θ to the horizontal. The car reaches a maximum speed <i>v</i> at a height <i>h</i> above its initial		

position. A constant resistance force R opposes the motion of the car, which has a maximum engine power output P.Neda finds a formula for P as

$$P = mgv\sin\theta + Rv + \frac{1}{2}mv^3\frac{\sin\theta}{h}$$

where g is the acceleration due to gravity.

Given that the engine power output may be measured in newton metres per second, determine whether the formula is dimensionally consistent. (6 marks)