6 A particle P moves so that at time t seconds its velocity $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$ is

$$\mathbf{v}=2t\,\mathbf{i}+4\mathbf{j},\qquad t\geqslant 0.$$

(a) At time t = 0, the particle is at the point with position vector $2\mathbf{j}$ metres.

Find the position vector of P at time t.

(4 marks)

(b) At times t = 2 and t = 4, the particle passes through the points C and D respectively.

Find the vector \overrightarrow{CD} .

(4 marks)

	Find the vector CD. (4 mail					
6 (a)	$\Gamma = \int (2t\mathbf{i} + 4\mathbf{j}) \mathrm{d}t$	M1		Integration attempted for M1		
(b)	$= t^{2}\mathbf{i} + 4t\mathbf{j}(+\mathbf{c})$ $t = 0, \ \Gamma = 2\mathbf{j}, \ 2\mathbf{j} = \mathbf{c}$ $\Gamma = t^{2}\mathbf{i} + (4t + 2)\mathbf{j}$ $t = 2, \ \Gamma = 4\mathbf{i} + 10\mathbf{j}$ $t = 4, \ \Gamma = 16\mathbf{i} + 18\mathbf{j}$	A1 m1 A1F M1 A1F A1F	4	Any vector form subs either value of <i>t</i> into r for M1 ft for vectors with 2 non zero components		
	$\overrightarrow{CD} = 12\mathbf{i} + 8\mathbf{j}$	A1F	4	subtraction of two vectors Alternative		
				$\begin{bmatrix} t^{2}\mathbf{i} + 4t\mathbf{j} \end{bmatrix}_{2}^{4} \qquad M1$ $= (16\mathbf{i} + 16\mathbf{j}) - (4\mathbf{i} + 8\mathbf{j}) A1F A1F$ $= 12\mathbf{i} + 8\mathbf{j} \qquad A1F$		
				subtraction		
	Total		8			

1 A particle moves so that at time, t seconds, its position, \mathbf{r} metres, is given by

$$\mathbf{r} = \left(t^3 - 3t^2\right)\mathbf{i} + \left(4t + 2t^2\right)\mathbf{j},$$

where i and j are perpendicular unit vectors.

- (a) By differentiating, find the velocity of the particle at time t. (2 marks)
- (b) Find, but do not simplify, an expression for the magnitude of the acceleration of the particle. (4 marks)
- (c) Find the time when the magnitude of the acceleration is a minimum and find its magnitude at this time. (3 marks)

Question Number and part	Solution	Marks	Total Marks	Comments
1 (a)	$\mathbf{v} = (3t^2 - 6t)\mathbf{i} + (4 + 4t)\mathbf{j}$	M1 A1	2	Differentiating both components Correct answer
(b)	$\mathbf{a} = (6t - 6)\mathbf{i} + 4\mathbf{j}$	M1 A1		Differentiating the velocity Correct acceleration
	$a = \sqrt{(6t - 6)^2 + 4^2}$	m1 A1	4	Finding magnitude (must include square root) Correct expression
(c)	6t - 6 = 0 $t = 1$	M1 A1		 i component equal to zero t=1 or M1: Differentiating A1: t=1
	a = 4	B1	3	a = 4 not 4j
	Total	3	9	

5 A sky diver jumps at time t = 0 from an aeroplane that is travelling horizontally. The velocity, $\mathbf{v} \ \mathbf{m} \ \mathbf{s}^{-1}$, of the sky diver at time t seconds is given by

$$\mathbf{v} = 70e^{-0.1t} \mathbf{i} + 40(e^{-0.1t} - 1) \mathbf{j}$$

where i and j are unit vectors in the horizontal and upward vertical directions respectively.

- (a) Describe what happens to the velocity of the sky diver as t increases. (2 marks)
- (b) Taking the origin to be the initial position of the sky diver, find an expression for his position vector at time t seconds.

 (6 marks)

Question Number and part	Solution	Marks	Total Marks	Comments
5(a)	Vertical component increases towards 40 m s ⁻¹ Horizontal component decreases to zero	B1	2	
(b)	$\mathbf{r} = \int 70e^{-0.1t} dt \mathbf{i} + \int 40e^{-0.1t} - 40dt \mathbf{j}$ $= \left(-700e^{-0.1t} + c \right) \mathbf{i} + (-400e^{-0.1t} - 40t + d) \mathbf{j}$ Initial conditions imply $c = 700, d = 400$	M1 A1 A1 M1 A1	6	Integrates v For each component, ignore constants Finds constants For each constant
	$\mathbf{r} = (700 - 700e^{-0.1t})\mathbf{i} + (400 - 400e^{-0.1t} - 40t)\mathbf{j}$ Total	Al	8	FOF each constant

7 A boat moves so that its position vector, \mathbf{r} metres, at time t seconds is

$$\mathbf{r} = 40\cos\left(\frac{t}{20}\right)\mathbf{i} + 80\sin\left(\frac{t}{20}\right)\mathbf{j}$$

The unit vectors \mathbf{i} and \mathbf{j} are directed east and north respectively.

- (a) Find an expression for the velocity of the boat at time t. (3 marks)
- (b) In what direction is the boat travelling when t = 0? Justify your answer. (2 marks)

(c) At what time is the boat travelling due south for the first time? (2 marks)

Question Number and part	Solution	Marks	Total	Comments
7(a) (b) (c)	$\mathbf{v} = -2\sin\left(\frac{t}{20}\right)\mathbf{i} + 4\cos\left(\frac{t}{20}\right)\mathbf{j}$ $\mathbf{v} = 4\mathbf{j}$ Travelling north $\frac{t}{20} = \pi$	M1 A1 A1 B1 B1		Differentiating i component correct j component correct Correct velocity at $t = 0$ Travelling north with $\mathbf{v} = n\mathbf{j}$ where $n > 0$ Equation for t based on $0\mathbf{i}$
	$t = 20\pi$	A1	2	Correct solution
	Total		7	