AQA MBM1 Jan 01 Q2

- 2 A particle moves in the horizontal plane that contains the perpendicular unit vectors \mathbf{i} and \mathbf{j} . Initially it is at the origin and has velocity $18\mathbf{i} \text{ ms}^{-1}$. After accelerating for 10 seconds its velocity is $(30\mathbf{i} + 8\mathbf{j}) \text{ ms}^{-1}$. Assume that the acceleration of the particle is constant.
 - (a) Find the acceleration of the particle.

(2 marks)

(b) Find the position vector of the particle when its velocity is $(36\mathbf{i} + 12\mathbf{j}) \text{ ms}^{-1}$. (6 marks)

2 (a)	$30\mathbf{i} + 8\mathbf{j} = 18\mathbf{i} + 10\mathbf{a}$ $a = 1.2\mathbf{i} + 0.8\mathbf{j}$	M1 A1	(2)	M1: use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$
(b)	$36\mathbf{i} + 12\mathbf{j} = 18\mathbf{i} + (1.2\mathbf{i} + 0.8\mathbf{j})t$ $t = \frac{36 - 18}{1.2} = 15 \text{ or } t = \frac{12}{0.8} = 15$	M1 m1 A1		M1: use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ m1: forming linear equation for t
	$\mathbf{r} = 18\mathbf{i} \times 15 + \frac{1}{2} (1.2\mathbf{i} + 0.8\mathbf{j}) \times 15^{2}$ = $405\mathbf{i} + 90\mathbf{j}$	M1 A1 A1	(6)	M1: use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$
		TOTAL	8	

AQA MBM1 Jan 01 Q5

- 5 A car, of mass 900 kg, is initially at rest. On a short journey the car
 - I. accelerates uniformly for T seconds to a speed of 20 ms⁻¹,
 - II. then travels at this speed for a period of time,
 - III. then decelerates uniformly for 2T seconds before coming to rest.
 - (a) In one journey the car moves for a total of 40 seconds and travels a total of 620 m. Using this information:
 - (i) sketch a velocity-time graph and hence, or otherwise, find T; (5 marks)
 - (ii) calculate the magnitude of the resultant force on the car, during each stage of the journey; (2 marks)
 - (iii) sketch a graph to show how the resultant force acting on the car varies with time;
 (3 marks)
 - (iv) find the speed of the car after it has travelled 20 m. (3 marks)
 - (b) In the case when T = 5, find the time that it would take the car to complete a 1000 m journey. (3 marks)

AQA MBM1 Nov 02 Q7

- 7 At time t = 0, a boat is travelling due east at a speed of 3 m s⁻¹. The unit vectors **i** and **j** are directed east and north respectively.
 - (a) Write down the initial velocity of the boat in vector form.

(1 mark)

- (b) The boat has a constant acceleration of (0.1i + 0.2j) m s⁻². Find an expression for the velocity of the boat at time t seconds. (2 marks)
- (c) When t = T, the boat is travelling north east. Form an equation that T must satisfy, and solve it to show that T = 30. (4 marks)
- (d) Find the distance of the boat from its initial position when t = 20.

(5 marks)

Question	Solution	Marks	Total	Comments
7(a)	$\mathbf{u} = 3\mathbf{i}$	B1	1	Correct velocity
(b)	$\mathbf{v} = 3\mathbf{i} + (0.1\mathbf{i} + 0.2\mathbf{j})t$	M1		Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$
		A1	2	Correct velocity
(c)	$\mathbf{v} = (3 + 0.1t)\mathbf{i} + 0.2t\mathbf{j}$ 3 + 0.1t = 0.2t	M1 M1		Velocity in two components Equation to find <i>t</i>
	$t = \frac{3}{0.1} = 30 \text{ s}$	A1 A1	4	Correct equation Correct time
(d)	$r = 3 i \times 20 + \frac{1}{2} (0.1 i + 0.2 j) \times 20^{2}$	M1 A1		Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ Correct expression
	= 60 i + 20 i + 40 j			
	$= 80 \mathbf{i} + 40 \mathbf{j}$	A 1		Correct displacement
	$d = \sqrt{80^2 + 40^2} = 89.4 \mathrm{m}$	m1		Finding distance
		A 1	5	Correct distance
	Total		12	

AQA MBM1 Nov 03 Q8

- 8 At time t = 0, a particle is at the origin and moving with velocity $(4\mathbf{i} + 2\mathbf{j}) \,\mathrm{m\,s^{-1}}$. When t = 10 seconds the position vector of the particle is $(44\mathbf{i} + 28\mathbf{j})$ metres. The particle is moving with constant acceleration.
 - (a) Find the acceleration of the particle.

(4 marks)

(b) Find the position vector of the particle at time t.

(3 marks)

(c) At time t = T, the position vector of the particle is $(96\mathbf{i} + 72\mathbf{j})$ metres.

(i) Find T.

(4 marks)

(ii) Find the speed of the particle at this time.

(3 marks)

8(a)	$44\mathbf{i} + 28\mathbf{j} = 10(4\mathbf{i} + 2\mathbf{j}) + 50\mathbf{a}$	M1		Equation to find a using position vector
()		A1		Correct equation
	$\mathbf{a} = 0.08\mathbf{i} + 0.16\mathbf{j}$	M1		Solving for a
		A 1	4	Correct a
(b)	$\frac{1}{1}$			
	$\mathbf{r} = (4\mathbf{i} + 2\mathbf{j})t + \frac{1}{2}(0.08\mathbf{i} + 0.16\mathbf{j})t^2$	M1		Equation for r
	$= (4t + 0.04t^2)\mathbf{i} + (2t + 0.08t^2)\mathbf{j}$	A 1		One component correct
	$= (4i + 0.04i)\mathbf{i} + (2i + 0.08i)\mathbf{j}$	A 1	3	Second component correct
4 > 4 >				
(c)(i)	$96 = 4T + 0.04T^2 72 = 2T + 0.08T^2$	M1		Forms and solves equation for one
	T = 20 or -120 $T = 20 or -45$			component
	Hence $T = 20$	A1		Correct solutions
	Hence $I=20$	M1		Forms and solves equation for other component
		A 1	4	Correct solutions plus correct conclusion
(d)	$\mathbf{v} = (4\mathbf{i} + 2\mathbf{j}) + (0.08\mathbf{i} + 0.16\mathbf{j}) \times 20$	M1		Finding v at $t = 20$
	$=5.6\mathbf{i}+5.2\mathbf{j}$	A 1		Correct v
	$v = \sqrt{5.6^2 + 5.2^2} = 7.64 \mathrm{ms}^{-1}$	A 1	3	Finding correct speed
	Total		14	
	TOTAL		80	