# Core 1 – Linear Graphs

## Challenge 1

The points A and B have coordinates (13, 5) and (9, 2) respectively.

(a) (i) Find the gradient of AB.

(1 mark)

(ii) Find an equation for the line AB.

(1 mark)

- (b) The point C has coordinates (2, 3) and the point X lies on AB so that XC is perpendicular to AB.
  - (i) Show that the equation of the line XC can be written in the form 4x + 3y = 17.

(4 marks)

(ii) Calculate the coordinates of X.

(3 marks)



#### Challenge 2

The points P, Q and R have coordinates (3,1), (1,9) and (7,2) respectively.



- (a) Find an equation for the straight line QR in the form ax + by = c, where a, b and c are integers. (3 marks)
- (b) Prove that the triangle PQR is right-angled and find its area. (4 marks)
- (c) Determine an equation for the straight line which passes through P and which is perpendicular to QR. (2 marks)



## Challenge 3

The points A, B and C have coordinates (1,7), (5,5) and (7,9) respectively.

- (a) Show that AB and BC are perpendicular.
- (b) Find an equation of the line BC. (2 marks)
- (c) The equation of the line AC is 3y = x + 20 and M is the midpoint of AB.
  - (i) Find an equation of the line through M parallel to AC. (3 marks)
  - (ii) This line intersects BC at the point T. Find the coordinates of T. (3 marks)



(3 marks)

#### Final Challenge

The line AB has equation 3x - 4y = 4, and the line BC has equation 4x + 3y = 22.

(a) (i) Find the gradient of AB.

(2 marks)

(ii) Prove that the lines AB and BC are perpendicular.

(2 marks)

(b) Find the coordinates of the point B.

(3 marks)

- (c) The point A has coordinates (4p, 3p 1), where p is a constant, and the point C has coordinates (1, 6).
  - (i) Show that  $AC^2 = 25p^2 50p + 50$ .

(2 marks)

(ii) Given that AC has length  $\sqrt{125}$ , find the possible values of p.

(3 marks)

