FP1 Matrices Challenge

Challenge 1

The matrices A and B are defined by

$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$$

(a) Calculate the matrices:

(i)
$$\mathbf{A} + \mathbf{B}$$
; (2 marks)

(b) Show that $\mathbf{A} + \mathbf{B} - \mathbf{A}\mathbf{B} = k\mathbf{I}$, where k is an integer and \mathbf{I} is the 2×2 identity matrix. (2 marks)

Challenge 2

The matrices A, B and C are given by

$$\mathbf{A} = \begin{bmatrix} 1 & -2 \\ 3 & 4 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 4 & 2 \\ -3 & 1 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$$

- (a) Calculate the matrices:
 - (i) **AB**; (2 marks)
 - (ii) ABC.
- (b) Describe the geometrical transformation represented by the matrix **AB**. (2 marks)

Challenge 3

The matrix \boldsymbol{M} is $\begin{bmatrix} \frac{-1}{2} & \frac{-\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} \end{bmatrix}$.

(a) Find:

(i)
$$M^2$$
; (2 marks)

(ii)
$$M^3$$
. (1 mark)

(b) The transformation T is given by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \boldsymbol{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

Describe fully the geometrical transformation represented by **T**. (2 marks)

Final Challenge

A transformation T_1 is represented by the matrix

$$\mathbf{M}_{1} = \begin{bmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}.$$

(a) Give a geometrical description of T_1 .

(3 marks)

The transformation T_2 is a reflection in the line $y = \sqrt{3}x$.

(b) Find the matrix \mathbf{M}_2 which represents the transformation T_2 .

(3 marks)

(c) (i) Find the matrix representing the transformation T_2 followed by T_1 .

(2 marks)

(ii) Give a geometrical description of this combined transformation.

(3 marks)

