3 The matrices A and B are defined by

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 45^{\circ} & -\sin 45^{\circ} \\ 0 & \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix}.$$

- (a) Give a geometrical description of each of the transformations represented by the matrices **A** and **B**. (6 marks)
- (b) For each of these transformations, find the line of invariant points.

(2 marks)

	(0)	Tor cuch or these transfermations,			ariant points. (2 mants)
3	(a)	A Shear Parallel to y - axis	M1 A1		
		$(1,0) \rightarrow (1,3)$	B1		e.g.(check suggested point) $(1, 1) \rightarrow (1, 4)$ not SF
		B Rotation	M1		
		About x - axis	A1		or "in y-z plane"
		of 45°	A1	6	
	(b)	A <i>y</i> - axis	B1		or $\underline{\underline{x=0}}$, $\begin{bmatrix} 0 \\ \lambda \end{bmatrix}$
		\mathbf{B} x - axis	B1	2	or $\underline{y=z=0}$, $\begin{bmatrix} \lambda \\ 0 \\ 0 \end{bmatrix}$
		Total		8	

1 (a) The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Find the matrix **AB**. (2 marks)

(b) The matrix M is given by

$$\mathbf{M} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

- (i) Give a geometrical description of the transformation represented by the matrix M.

 (4 marks)
- (ii) Which line is invariant under M?

(1 mark)

Q	Solution	Marks	Total	Comments
1(a)	$\mathbf{AB} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$	B2,1,0	2	
(b)(i)	This transformation represents a rotation of 180°	В1		accept reflection in z-axis or in both x-and y-axes
	about the z-axis	B1		
	together with an enlargement scale factor 3	В1		accept 'stretch' as long as clear, but not enlargement along an axis
	from the origin	B1	4	
(ii)	z-axis	В1	1	OE
	Total		7	

3 A matrix M_1 is given by

$$\mathbf{M}_1 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

- (a) Give a geometrical description of the transformation T_1 represented by \mathbf{M}_1 . (2 marks)
- (b) The diagram below shows the points A(1,0,0), B(0,1,0) and C(0,0,1).

A second transformation, T_2 , is a rotation of π radians about the line x = z, y = 0.

- (i) Find the images of the points A, B, and C under T_2 . (2 marks)
- (ii) Write down the matrix M_2 which represents this transformation. (2 marks)
- (c) (i) Show that the matrix M_3 , which represents the transformation T_2 followed by the transformation T_1 , is given by

$$\mathbf{M}_3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{2 marks}$$

(ii) Give a geometrical description of the transformation represented by the matrix M_3 .

(2 marks)

Q	Solution	Marks	Total	Comments
3 (a)	\mathbf{M}_1 is a rotation of $-\frac{\pi}{2}$ about y-axis	B1B1	2	Accept $-\frac{\pi}{2}$, 90°
(b)(i)	$(1, 0, 0) \rightarrow (0, 0, 1)$ $(0, 1, 0) \rightarrow (0, -1, 0)$ $(0, 0, 1) \rightarrow (1, 0, 0)$	B2,1,0	2	
(ii)	$\mathbf{Matrix} \ \mathbf{M}_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$	M1A1F	2	
(c)(i)	$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	M1A1	2	AG M1 for getting the order of the matrices correct
(ii)	Rotation of π about the z-axis	B1B1	2	Accept 180°
	Total		10	

4 Three linear transformations, T_1 , T_2 and T_3 , of three-dimensional space are represented by the matrices

$$\mathbf{M}_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{M}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \text{ and } \mathbf{M}_{3} = \begin{bmatrix} 3 & 2 & 1 \\ -3 & 2 & 6 \\ 2 & 4 & 4 \end{bmatrix}$$

respectively.

(a) Give a geometrical description of the transformations

(i)
$$T_1$$
, (2 marks)

(ii)
$$T_2$$
. (3 marks)

(b) Show that the line with Cartesian equations

$$\frac{x}{4} = -\frac{y}{3} = \frac{z}{2}$$

is invariant under T_3 .

(5 marks)

Q	Solution	Marks	Total	Comments
4 (a)(i)	Reflection, (plane) $z = 0$	B1B1	2	
(ii)	Rotation, 30°, x-axis	B1B1B1	3	
(b)	(4, -3, 2)	B1		
	$ (4, -3, 2) \rightarrow (8, -6, 4) $	M1A1		
	Doubled or multiple	E1		
	Convincing argument	+E1	5	e.g. refer to through origin
	Alternative: $(4\lambda, -3\lambda, 2\lambda)$ $\rightarrow (8\lambda, -6\lambda, 4\lambda)$ on same line	M1A1 M1A1 E1		
	Total		10	