FP4 - Matrix Transformations Challenge

Challenge 1

The matrices \mathbf{A} and \mathbf{B} are defined by

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos 45^{\circ} & -\sin 45^{\circ} \\ 0 & \sin 45^{\circ} & \cos 45^{\circ} \end{bmatrix}.$$

- (a) Give a geometrical description of each of the transformations represented by the matrices **A** and **B**. (6 marks)
- (b) For each of these transformations, find the line of invariant points. (2 marks)

Challenge 2

(a) The matrices A and B are given by

$$\mathbf{A} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{B} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

Find the matrix AB. (2 marks)

(b) The matrix M is given by

$$\mathbf{M} = \begin{bmatrix} -3 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 3 \end{bmatrix}.$$

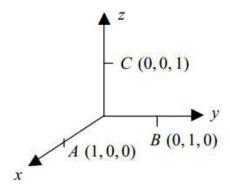
- Give a geometrical description of the transformation represented by the matrix M.
 (4 marks)
- (ii) Which line is invariant under M? (1 mark)

Challenge 3

A matrix M_1 is given by

$$\mathbf{M}_1 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

- (a) Give a geometrical description of the transformation T_1 represented by \mathbf{M}_1 . (2 marks)
- (b) The diagram below shows the points A(1,0,0), B(0,1,0) and C(0,0,1).



A second transformation, T_2 , is a rotation of π radians about the line x = z, y = 0.

- (i) Find the images of the points A, B, and C under T_2 . (2 marks)
- (ii) Write down the matrix M_2 which represents this transformation. (2 marks)
- (c) (i) Show that the matrix M_3 , which represents the transformation T_2 followed by the transformation T_1 , is given by

$$\mathbf{M}_3 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}. \tag{2 marks}$$

(ii) Give a geometrical description of the transformation represented by the matrix M_3 .

(2 marks)

Final Challenge

Three linear transformations, T_1 , T_2 and T_3 , of three-dimensional space are represented by the matrices

$$\mathbf{M}_{1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{M}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix} \text{ and } \mathbf{M}_{3} = \begin{bmatrix} 3 & 2 & 1 \\ -3 & 2 & 6 \\ 2 & 4 & 4 \end{bmatrix}$$

respectively.

(a) Give a geometrical description of the transformations

(i)
$$T_1$$
, (2 marks)

(ii)
$$T_2$$
.

(b) Show that the line with Cartesian equations

$$\frac{x}{4} = -\frac{y}{3} = \frac{z}{2}$$

is invariant under T_3 . (5 marks)

