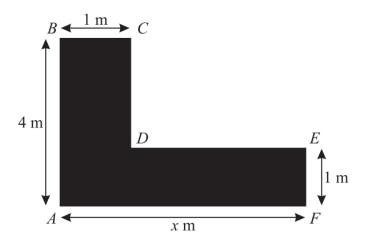
M2 Moments Challenge

Challenge 1

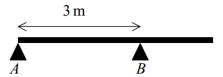
A uniform metal bar, of mass 30 kg and length 3 m, rests in a horizontal position, on two supports at A and B, as shown in the diagram below.


Find the magnitude of each of the reaction forces acting on the bar at the supports at A and B.

(4 marks)

Challenge 2

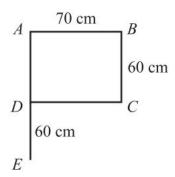
The diagram shows a uniform lamina.



- (a) For a particular lamina, x = 7.
 - (i) Find the distance of the centre of mass of the lamina from the side AB. (3 marks)
 - (ii) The lamina is suspended from the corner C. Find the angle between the side CD and the vertical. (5 marks)
- (b) Another lamina is suspended from the corner C. Given that the side CD is vertical, find x.

Challenge 3

A uniform metal beam has length 5 metres and mass $250 \,\mathrm{kg}$. It rests horizontally on two supports, A and B, which are 3 metres apart. Support A is at one end of the beam, as shown in the diagram.



- (a) Find the magnitudes of the forces exerted on the beam by the supports. (4 marks)
- (b) A man, of mass 80 kg, walks along the beam from A towards the other end of the beam. Find the distance he can walk past B, before the beam starts to tip. (3 marks)

Final Challenge

A letter P is formed by bending a uniform steel rod into the shape shown below, in which ABCD is a rectangle.

- (a) Find the distance of the centre of mass of the letter from the side
 - (i) AE, (3 marks)
 - (ii) AB. (3 marks)

The letter is to be suspended from a point F on the side AB. The point F is a distance x cm from A.

- (b) State the value of x if the side AB is to be horizontal. (1 mark)
- (c) Find the value of x if the side AB is to be at an angle of 5° to the horizontal, with A higher than B.

