Momentum Challenge

Challenge 1

A particle P has mass 5 kg. It is moving along a straight line with speed 4 m s⁻¹, when it collides directly with another particle Q which is at rest. The mass of Q is $m \, \text{kg}$.

After the collision P moves with a speed of 1.2 m s⁻¹ and Q moves with a speed of 1.4 m s⁻¹.

- (a) If P and Q both move in the same direction after the collision, show that m = 10.

 (3 marks)
- (b) If P and Q move in opposite directions after the collision, find m. (3 marks)

Challenge 2

A trolley, of mass $10 \, \text{kg}$, is placed at rest on a set of straight horizontal rails. Large pellets, each of mass $0.5 \, \text{kg}$, are fired at the trolley. When each pellet hits the trolley, the pellet is travelling horizontally and parallel to the rails at a speed of $20 \, \text{m s}^{-1}$. When the pellets hit the trolley, they stick to it and continue to move with the trolley. Assume that there is no resistance to the motion of the trolley.

- (a) Show that the speed of the trolley after it has been hit by the first pellet is $\frac{20}{21}$ m s⁻¹. (2 marks)
- (b) Find the speed of the trolley after it has been hit by the second pellet. (4 marks)

Challenge 3

Two particles, A and B, are moving with constant speeds in the same direction along a straight horizontal line. The velocity of A is $5 \,\mathrm{m\,s^{-1}}$ and its mass is $0.1 \,\mathrm{kg}$. The velocity of B is $3 \,\mathrm{m\,s^{-1}}$ and its mass is $0.4 \,\mathrm{kg}$. The two particles collide. The diagram shows the velocities before the collision.

- (a) If the particles coalesce during the collision, find the velocity of the combined particle after the collision. (3 marks)
- (b) If the particles do **not** coalesce during the collision, and the velocity of B increases to $3.5 \,\mathrm{m\,s^{-1}}$, find the velocity of A after the collision. (4 marks)

Final Challenge

A particle of mass m has velocity $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ m s⁻¹. It then collides with a particle of mass 3 kg which has velocity $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$ m s⁻¹. During the collision the particles coalesce and move with velocity $\begin{bmatrix} 1 \\ V \end{bmatrix}$ m s⁻¹.

(a) Show that m = 2. (4 marks)

(b) Find V. (3 marks)

