

The velocity-time graph shows the velocity, $v \, \text{m s}^{-1}$, at time t seconds, of a particle P which moves in a straight line. The motion of P has two separate stages.

In the first stage, P moves with velocity $v = 2t^2$ for 4 seconds.

In the second stage, P moves with a constant retardation for a further 16 seconds until coming to rest.

(a) Find the value of v when t = 4. (1 mark)

(b) Find the total distance travelled by P during the **two** stages of the motion. (6 marks)

(c) The particle has mass $0.2 \,\mathrm{kg}$. Find the magnitude of the force acting on P when:

(i)
$$t=2$$
; (4 marks)

(ii)
$$t = 10$$
. (3 marks)

7(a)	v = 32	B1	1	
(b)	$V = 32$ $S_1 = \int_0^4 2t^2 dt$	M 1		Attempt to integrate
	$= \left[\frac{2t^3}{3}\right]_0^4$	A1		
	$=2\times\frac{64}{3}-0$	m1		Both limits used or c found
	$S_2 = \frac{1}{2} \times 16 \times 32$	M1		
	= 256	A1F		
	Total distance = 299	A1F	6	AWRT
(c)(i)	acc = 4t	M1		
	= 4×2	A 1		
	Force = $m \times acc$	m1		Used
	= 1.6 N	A1F	4	
(ii)	$acc = \frac{0 - 32}{16}$	M1		
	$acc/ret = \pm 2$	A1		
	force = + 0.4 N	A1F	3	Condone +2 used throughout if deceleration or retardation stated
	Total		14	

6 A particle moves so that, at time t, its acceleration is $3e^{-2t}\mathbf{i} + 2\mathbf{j}$. Its initial velocity is $5\mathbf{i}$. The unit vectors \mathbf{i} and \mathbf{j} are perpendicular.

Show that the velocity \mathbf{v} of the particle at time t is given by

$$\mathbf{v} = \left(\frac{13 - 3e^{-2t}}{2}\right)\mathbf{i} + 2t\mathbf{j}$$
 (7 marks)

Question Number and part	Solution	Marks	Total Marks	Comments
6	$\mathbf{v} = \int 3\mathbf{e}^{-2t} dt \mathbf{i} + \int 2dt \mathbf{j}$	M1A1		Integrating 3e ^{-2t}
	$\mathbf{v} = \int 3e^{-2t} dt \mathbf{i} + \int 2dt \mathbf{j}$ $= \left(-\frac{3}{2}e^{-2t} + c\right)\mathbf{i} + (2t + d)\mathbf{j}$	M1		Integrating 2
				Constants of integration
	d=0	B1		d = 0
	$5 = -\frac{3}{2} + c$			
	$5 = -\frac{3}{2} + c$ $c = \frac{13}{2}$			
	$\mathbf{v} = \left(\frac{13 - 3e^{-2t}}{2}\right)\mathbf{i} + 2t\mathbf{j}$	M1		Finding c
		A1	7	Correct c plus correct final form
			_	
	Total		7	

- 7 A particle has mass 2000 kg. A single force, $\mathbf{F} = 1000t\mathbf{i} 5000\mathbf{j}$ newtons, acts on the particle, at time t seconds. The unit vectors \mathbf{i} and \mathbf{j} are perpendicular. No other forces act on the particle.
 - (a) Find an expression for the acceleration of the particle. (2 marks)
 - (b) At time t = 0, the velocity of the particle is $6\mathbf{j}$ m s⁻¹. Show that at time t the velocity, \mathbf{v} m s⁻¹, of the particle is given by

$$\mathbf{v} = \frac{t^2}{4}\mathbf{i} + \left(6 - \frac{5t}{2}\right)\mathbf{j} \tag{4 marks}$$

(c) The particle is initially at the origin. Find an expression for the position vector, \mathbf{r} metres, of the particle at time t seconds. (4 marks)

Q	Solution	Marks	Total	Comments
7(a)	$\mathbf{a} = \frac{1000t\mathbf{i} - 5000\mathbf{j}}{2000} = \frac{t}{2}\mathbf{i} - \frac{5}{2}\mathbf{j}$	M1 A1	2	Using Newton's 2 nd law Correct acceleration
(b)	$\mathbf{v} = \left(\frac{t^2}{4} + c\right)\mathbf{i} + \left(\frac{-5t}{2} + d\right)\mathbf{j}$	M1 A1		Integration Correct integral with or without constants
	$t = 0, \mathbf{v} = 6\mathbf{j} \Rightarrow c = 0, d = 6$			
	$\mathbf{v} = \left(\frac{t^2}{4}\right)\mathbf{i} + \left(6 - \frac{5t}{2}\right)\mathbf{j}$	m1 A1	4	Evaluation of constants Correct constants and correct final answer
(c)	$\mathbf{r} = \left(\frac{t^3}{12} + e\right)\mathbf{i} + \left(6t - \frac{5t^2}{4} + f\right)\mathbf{j}$	M1 A1		Integration Correct integral with or without constants
	$t = 0, \mathbf{r} = 0\mathbf{i} + 0\mathbf{j} \Rightarrow e = 0, f = 0$			
	$\mathbf{r} = \left(\frac{t^3}{12}\right)\mathbf{i} + \left(6t - \frac{5t^2}{4}\right)\mathbf{j}$	m1 A1	4	Evaluation of constants Correct constants and correct final answer
	Total		10	

7 A particle P moves so that at time t seconds its position vector, \mathbf{r} metres, is

$$\mathbf{r} = \begin{bmatrix} 2t^2 + 6 \\ 5t \end{bmatrix}, \qquad 0 \le t \le 5.$$

- (a) Find the velocity of P at time t. (2 marks)
- (3 marks)
- (b) The force acting on P is $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ newtons. Find the mass of P.

 (c) At the instant when t = 5, an additional force, $\begin{bmatrix} 0 \\ t \end{bmatrix}$ newtons, begins to act on P.
 - (i) Find the resultant acceleration of P. (3 marks)
 - (ii) Find the velocity of P when t = 10. (5 marks)

Q	Solution	Marks	Total	Comments
7 (a)	$\dot{r} = \begin{bmatrix} 4t \\ 5 \end{bmatrix}$	MIAI	2	Attempt to differentiate for M1, ie one term clearly differentiated
(b)	$\ddot{r} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	B1F		
	$F = m \ddot{r} \Rightarrow \begin{bmatrix} 2 \\ 0 \end{bmatrix} = m \begin{bmatrix} 4 \\ 0 \end{bmatrix}$	MI		two vectors
(c)(i)	$\mathbf{F_2} = \begin{bmatrix} 0 \\ t \end{bmatrix}, \text{ resultant } \mathbf{F} = \begin{bmatrix} 2 \\ t \end{bmatrix}$	A1F B1	3	FT one slip, provided m is scalar $Accept \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ t \end{bmatrix}$
200	$\begin{bmatrix} 2 \\ t \end{bmatrix} = \frac{1}{2} \mathbf{a}, \Rightarrow \mathbf{a} = \begin{bmatrix} 4 \\ 2t \end{bmatrix}$	MIAIF	3	Use of $F=ma$ for M1 with candidate's F and A 1F for function of t
(ii)	$\mathbf{v} = \int \begin{bmatrix} 4 \\ 2t \end{bmatrix} \mathrm{d}t$	MI		Can gain part (i) marks at this stage M1 for attempt to integrate, one term clearly integrated
	$= \begin{bmatrix} 4t \\ t^2 \end{bmatrix} (+ \mathbf{c})$	A1F		Integration of a function of t
	$t=5, \mathbf{v} = \begin{bmatrix} 20 \\ 5 \end{bmatrix}$	BIF		FT variable velocity from (a)
	$ \begin{bmatrix} 20 \\ 5 \end{bmatrix} = \begin{bmatrix} 20 \\ 25 \end{bmatrix} + \mathbf{c} $	m1		Find c or use limits on both sides $(t=5, \mathbf{v} = \begin{bmatrix} 20 \\ 5 \end{bmatrix})$
	$\mathbf{c} = \begin{bmatrix} 0 \\ -20 \end{bmatrix}$			
	$\mathbf{v} = \begin{bmatrix} 40 \\ 100 \end{bmatrix} + \begin{bmatrix} 0 \\ -20 \end{bmatrix} = \begin{bmatrix} 40 \\ 80 \end{bmatrix}$	AlF	5	
	Total			