M2 Newton's Laws Challenge

Challenge 1

The velocity-time graph shows the velocity, $v \, \text{m s}^{-1}$, at time t seconds, of a particle P which moves in a straight line. The motion of P has two separate stages.

In the first stage, P moves with velocity $v = 2t^2$ for 4 seconds.

In the second stage, P moves with a constant retardation for a further 16 seconds until coming to rest.

(a) Find the value of v when t = 4.

(1 mark)

(b) Find the total distance travelled by P during the **two** stages of the motion.

(6 marks)

(c) The particle has mass $0.2 \,\mathrm{kg}$. Find the magnitude of the force acting on P when:

(i)
$$t=2$$
; (4 marks)

(ii)
$$t = 10$$
. (3 marks)

Challenge 2

A particle moves so that, at time t, its acceleration is $3e^{-2t}\mathbf{i} + 2\mathbf{j}$. Its initial velocity is $5\mathbf{i}$. The unit vectors \mathbf{i} and \mathbf{j} are perpendicular.

Show that the velocity \mathbf{v} of the particle at time t is given by

$$\mathbf{v} = \left(\frac{13 - 3e^{-2t}}{2}\right)\mathbf{i} + 2t\mathbf{j} \tag{7 marks}$$

Challenge 3

A particle has mass 2000 kg. A single force, $\mathbf{F} = 1000t\mathbf{i} - 5000\mathbf{j}$ newtons, acts on the particle, at time t seconds. The unit vectors \mathbf{i} and \mathbf{j} are perpendicular. No other forces act on the particle.

- (a) Find an expression for the acceleration of the particle. (2 marks)
- (b) At time t = 0, the velocity of the particle is $6\mathbf{j}$ m s⁻¹. Show that at time t the velocity, \mathbf{v} m s⁻¹, of the particle is given by

$$\mathbf{v} = \frac{t^2}{4}\mathbf{i} + \left(6 - \frac{5t}{2}\right)\mathbf{j} \tag{4 marks}$$

(c) The particle is initially at the origin. Find an expression for the position vector, \mathbf{r} metres, of the particle at time t seconds. (4 marks)

Final Challenge

A particle P moves so that at time t seconds its position vector, \mathbf{r} metres, is

$$\mathbf{r} = \begin{bmatrix} 2t^2 + 6 \\ 5t \end{bmatrix}, \qquad 0 \le t \le 5.$$

- (a) Find the velocity of *P* at time *t*. (2 marks)
- (b) (3 marks)
- The force acting on P is $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ newtons. Find the mass of P.

 At the instant when t = 5, an additional force, $\begin{bmatrix} 0 \\ t \end{bmatrix}$ newtons, begins to act on P.
 - Find the resultant acceleration of *P*. (3 marks)
 - (ii) Find the velocity of P when t = 10. (5 marks)

