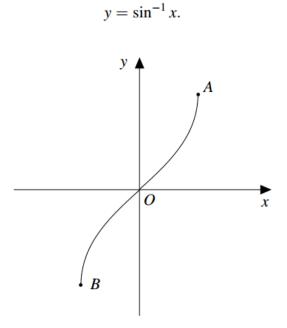
C3 Numerical methods Challenge

Challenge 1

(a) The diagram shows the graph of



Write down the coordinates of the end-points A and B.

(b) Use the mid-ordinate rule, with five strips of equal width, to estimate the value of

$$\int_0^1 \sin^{-1} x \, \mathrm{d}x.$$

Give your answer to three decimal places.

(5 marks)

(2 marks)

Challenge 2

 $f(x) = 2x^2 + 3\ln(2-x), x \in \mathbb{R}, x < 2.$

(a) Show that the equation f(x) = 0 can be written in the form

$$x=2-e^{kx^2},$$

where *k* is a constant to be found.

The root, α , of the equation f(x) = 0 is 1.9 correct to 1 decimal place.

(b) Use the iteration formula

$$x_{n+1}=2-e^{kx_n^2},$$

with $x_0 = 1.9$ and your value of k, to find α to 3 decimal places and justify the accuracy of your answer.

(5)

Challenge 3

- (a) Use Simpson's rule with 7 ordinates (6 strips) to find an approximation to $\int_{0.5}^{2} \frac{x}{1+x^3} dx$, giving your answer to three significant figures. (4 marks)
- (b) Find the exact value of $\int_0^1 \frac{x^2}{1+x^3} dx$. (4 marks)

Final Challenge

- 2 For $0 < x \le 2$, the curves with equations $y = 4 \ln x$ and $y = \sqrt{x}$ intersect at a single point where $x = \alpha$.
 - (a) Show that α lies between 0.5 and 1.5.
 - (b) Show that the equation $4 \ln x = \sqrt{x}$ can be rearranged into the form

$$x = e^{\left(\frac{\sqrt{x}}{4}\right)} \tag{1 mark}$$

(2 marks)

(c) Use the iterative formula

$$x_{n+1} = e^{\left(\frac{\sqrt{x_n}}{4}\right)}$$

with $x_1 = 0.5$ to find the values of x_2 and x_3 , giving your answers to three decimal places. (2 marks)

(d) Figure 1, on the opposite page, shows a sketch of parts of the graphs of $y = e^{\left(\frac{\sqrt{x}}{4}\right)}$ and y = x, and the position of x_1 .

On **Figure 1**, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the x-axis. (2 marks)

