FP1 – Numercial methods Challenge

Challenge 1

- (a) Use logarithms to solve the equation $2^x = 7$, giving your answer to three significant figures. (2 marks)
- (b) The equation

$$2^{x} = 7 - x$$

has a single root, α .

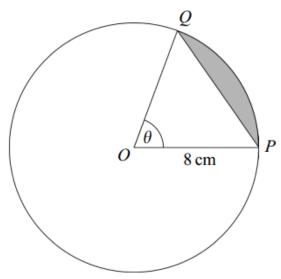
(i) Show that α lies between 2.0 and 2.4. (1 mark)

(ii) Use the bisection method to find an interval of width 0.1 in which α lies. (3 marks)

Challenge 2

A curve satisfies the differential equation $\frac{dy}{dx} = \sqrt{9 - x^2}$.

Starting at the point (0, 3) on the curve, use a step-by-step method with a step length of 0.5 to estimate the value of y at x = 1, giving your answer to two decimal places. (5 marks)


Challenge 3

- (a) Sketch, on the same diagram, the graphs of $y = \ln x$ and $y = \frac{3}{x}$ for x > 0. (2 marks)
- (b) (i) Show that the equation $\ln x \frac{3}{x} = 0$ has a root between x = 2 and x = 3. (2 marks)
 - (ii) With a starting value of 2.5, use the Newton-Raphson method once to find a second approximation to this root. (4 marks)

Final Challenge

The diagram shows a circle with centre O and radius 8 cm. The angle between the radii OP and OQ is θ radians.

- (a) (i) Find the area of the sector OPQ in terms of θ . (2 marks)
 - (ii) Find the area of the triangle OPQ in terms of $\sin \theta$. (2 marks)
 - (iii) Hence write down the area of the shaded segment. (1 mark)
- (b) When the area of the shaded segment is exactly one sixteenth of the area of the whole circle, θ satisfies the equation

$$8\theta - 8\sin\theta - \pi = 0$$
.

- (i) Show that this equation has a root between 1.3 and 1.4. (3 marks)
- (ii) Use linear interpolation once to show that an estimate for this root is 1.37.

 (3 marks)

