FP1 – Quadratic roots Challenge

Challenge 1

The quadratic equation

$$x^2 + px + 2 = 0$$

has roots α and β .

(a) Write down the value of $\alpha\beta$.

(1 mark)

(b) Express in terms of p:

(i)
$$\alpha + \beta$$
; (1 mark)

(ii)
$$\alpha^2 + \beta^2$$
. (2 marks)

(c) Given that $\alpha^2 + \beta^2 = 5$, find the possible values of p. (1 mark)

Challenge 2

(a) The quadratic equation $2x^2 - 6x + 1 = 0$ has roots α and β .

Write down the numerical values of:

(i)
$$\alpha\beta$$
; (1 mark)

(ii)
$$\alpha + \beta$$
. (1 mark)

(b) Another quadratic equation has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Find the numerical values of:

(i)
$$\frac{1}{\alpha} \times \frac{1}{\beta}$$
; (1 mark)

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
. (2 marks)

(c) Hence, or otherwise, find the quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$, writing your answer in the form $x^2 + px + q = 0$. (2 marks)

Challenge 3

(a) The roots of the quadratic equation $x^2 + 4x - 3 = 0$ are α and β .

Without solving the equation, find the value of:

(i)
$$\alpha^2 + \beta^2$$
;

(ii)
$$\left(\alpha^2 + \frac{2}{\beta}\right) \left(\beta^2 + \frac{2}{\alpha}\right)$$
. (6 marks)

(b) Determine a quadratic equation with integer coefficients which has roots

$$\left(\alpha^2 + \frac{2}{\beta}\right)$$
 and $\left(\beta^2 + \frac{2}{\alpha}\right)$. (4 marks)

Final Challenge

The roots of the quadratic equation $x^2 - 3x + 1 = 0$ are α and β .

- (a) Without solving the equation:
 - (i) show that $\alpha^2 + \beta^2 = 7$; (3 marks)
 - (ii) find the value of $\alpha^3 + \beta^3$. (3 marks)
- (b) (i) Show that $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 2(\alpha\beta)^2$. (1 mark)
 - (ii) Hence find the value of $\alpha^4 + \beta^4$. (2 marks)
- (c) Determine a quadratic equation with integer coefficients which has roots $(\alpha^3 \beta)$ and $(\beta^3 \alpha)$.

