FP1 – Quadratic roots Challenge ### Challenge 1 The quadratic equation $$x^2 + px + 2 = 0$$ has roots α and β . (a) Write down the value of $\alpha\beta$. (1 mark) (b) Express in terms of p: (i) $$\alpha + \beta$$; (1 mark) (ii) $$\alpha^2 + \beta^2$$. (2 marks) (c) Given that $\alpha^2 + \beta^2 = 5$, find the possible values of p. (1 mark) ## Challenge 2 (a) The quadratic equation $2x^2 - 6x + 1 = 0$ has roots α and β . Write down the numerical values of: (i) $$\alpha\beta$$; (1 mark) (ii) $$\alpha + \beta$$. (1 mark) (b) Another quadratic equation has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$. Find the numerical values of: (i) $$\frac{1}{\alpha} \times \frac{1}{\beta}$$; (1 mark) (ii) $$\frac{1}{\alpha} + \frac{1}{\beta}$$. (2 marks) (c) Hence, or otherwise, find the quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$, writing your answer in the form $x^2 + px + q = 0$. (2 marks) ### Challenge 3 (a) The roots of the quadratic equation $x^2 + 4x - 3 = 0$ are α and β . Without solving the equation, find the value of: (i) $$\alpha^2 + \beta^2$$; (ii) $$\left(\alpha^2 + \frac{2}{\beta}\right) \left(\beta^2 + \frac{2}{\alpha}\right)$$. (6 marks) (b) Determine a quadratic equation with integer coefficients which has roots $$\left(\alpha^2 + \frac{2}{\beta}\right)$$ and $\left(\beta^2 + \frac{2}{\alpha}\right)$. (4 marks) ### Final Challenge The roots of the quadratic equation $x^2 - 3x + 1 = 0$ are α and β . - (a) Without solving the equation: - (i) show that $\alpha^2 + \beta^2 = 7$; (3 marks) - (ii) find the value of $\alpha^3 + \beta^3$. (3 marks) - (b) (i) Show that $\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 2(\alpha\beta)^2$. (1 mark) - (ii) Hence find the value of $\alpha^4 + \beta^4$. (2 marks) - (c) Determine a quadratic equation with integer coefficients which has roots $(\alpha^3 \beta)$ and $(\beta^3 \alpha)$.