

The diagram shows a sketch of the curve  $y = 2\sqrt{x}$ .

The arc of the curve between x = 0 and x = 3 is rotated through  $2\pi$  radians about the x – axis.

(a) Show that S, the surface area generated, is given by

$$S = 4\pi \int_0^3 \sqrt{1+x} \, \mathrm{d}x \,. \tag{5 marks}$$

(b) Hence evaluate S. (3 marks)

| 0     | Solution                                                                                                                                                        | Marks | Total | Comments                                                                                                   |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------------------------------------------------------------------------------------------------------------|
| 3 (a) | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x}}$                                                                                                          | B1    |       |                                                                                                            |
|       | $\sqrt{\left(1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2\right)} = \sqrt{\left(1 + \frac{1}{x}\right)} = \left(\sqrt{\left(\frac{x+1}{x}\right)}\right)$ | M1A1√ |       | ft incorrect B1                                                                                            |
|       | $S = \int_0^3 2\pi  2\sqrt{x} \sqrt{\frac{x+1}{x}}  \mathrm{d}x$                                                                                                | M1    |       |                                                                                                            |
|       | $=4\pi \int_0^3 \sqrt{x+1}  \mathrm{d}x$                                                                                                                        | A1    | 5     | AG; CAO                                                                                                    |
| (b)   | $S = (4\pi) \frac{2}{3} \left[ (x+1)^{\frac{3}{2}} \right]_{0}^{3}$                                                                                             | M1A1  |       | For the M1 the integral must be of the form $k(1+x)^{\frac{3}{2}}$ . The A1 is for the correct coefficient |
|       | $=\frac{56\pi}{3} \ (58.64)$                                                                                                                                    | A1√   | 3     | Accept answer to 1 DP                                                                                      |
|       | Total                                                                                                                                                           |       | 8     |                                                                                                            |

A curve has equation

$$y = \sinh^2 x$$
.

(a) Show that

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cosh^2 2x. \tag{2 marks}$$

The arc of the curve between x = 0 and x = 1 is rotated through  $2\pi$  radians about the *x*-axis.

(b) (i) Show that S, the area of the curved surface generated, is given by

$$S = \pi \int_0^1 (\cosh 2x - 1) \cosh 2x \, dx. \qquad (3 \text{ marks})$$

(ii) Hence find S, giving an exact answer in terms of hyperbolic functions. (4 marks)

| 5 (a)  | $\frac{dy}{dx} = 2\sinh x \cosh x$ $1 + \left(\frac{dy}{dx}\right)^2 = 1 + \sinh^2 2x = \cosh^2 2x$                                                     | B1<br>B1 | 2 |                                                                              |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---|------------------------------------------------------------------------------|
| (b)(i) | $S = 2\pi \int_0^1 \sinh^2 x \cosh 2x  dx$ Use of $\sinh^2 x = \frac{1}{2} (\cosh 2x - 1)$                                                              | M1<br>m1 |   | Do not insist on limits at this stage  Clearly used                          |
| (ii)   | $S = \pi \int_0^1 (\cosh 2x - 1) \cosh 2x  dx$ Attempt to put $\cosh^2 2x$ in terms of $\cosh 4x$                                                       | A1<br>M1 | 3 | AG  If attempted by integration by parts,                                    |
|        | $S = \pi \int_0^1 \left[ \frac{1}{2} (1 + \cosh 4x) - \cosh 2x \right] dx$ $\begin{bmatrix} x & \sinh 4x & \sinh 2x \end{bmatrix}$                      | A1       |   | must be able to handle $\int \sinh^2 2x$ for M1. Then A2,1,0 for integration |
|        | $= \pi \left[ \frac{x}{2} + \frac{\sinh 4x}{8} - \frac{\sinh 2x}{2} \right]$ $= \pi \left[ \frac{1}{2} + \frac{\sinh 4}{8} - \frac{\sinh 2}{2} \right]$ | A1F      | 4 |                                                                              |
|        | Total                                                                                                                                                   |          | 9 |                                                                              |

A curve C has equation

$$y = \ln(1 - x^2), \quad 0 \le x < 1.$$

(a) Show that

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \left(\frac{1+x^2}{1-x^2}\right)^2. \tag{6 marks}$$

(b) Use the result

$$\frac{1+x^2}{1-x^2} = \frac{2}{1-x^2} - 1$$

to show that the length of the arc of C between the points where x = 0 and x = p is

$$2\tanh^{-1}p - p. (4 marks)$$

| ^     | C-1-4!                                                                 | Maalaa     | T-4-1 | C                                 |
|-------|------------------------------------------------------------------------|------------|-------|-----------------------------------|
| Q     | Solution                                                               | Marks      | Total | Comments                          |
| 5 (a) | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2x}{1-x^2}$                  | B1, B1     |       | B1 each numerator and denominator |
|       | $1 + \left(\frac{dy}{dx}\right)^2 = 1 + \frac{4x^2}{(1 - x^2)^2}$      | M1         |       |                                   |
|       | $=\frac{(1-x^2)^2+4x^2}{(1-x^2)^2}$                                    | A1F        |       |                                   |
|       | $=\frac{1-2x^2+x^4+4x^2}{\left(1-x^2\right)^2}$                        | A1         |       | CAO                               |
|       | $= \left(\frac{1+x^2}{1-x^2}\right)^2$                                 | A1         | 6     |                                   |
| (b)   | arc length = $\int_{0}^{\infty} \left( \frac{1+x^2}{1-x^2} \right) dx$ | M1         |       |                                   |
|       | $= \int_0^p \left(\frac{2}{1-x^2} - 1\right) \mathrm{d}x$              | A1         |       |                                   |
|       | $\left[2\tanh^{-1}x-x\right]_0^p$                                      | A1F        |       | ft if hyperbolic                  |
|       | $= 2 \tanh^{-1} p - p$                                                 | <b>A</b> 1 | 4     | AG                                |
|       | Total                                                                  |            | 10    |                                   |

- (a) Evaluate:
  - (i)  $\int \cosh^2 x \, dx$ ; (3 marks)
  - (ii)  $\int x \cosh x \, dx$ . (3 marks)
- (b) A curve C is given parametrically by the equations

$$x = \cosh t + t, \qquad y = \cosh t - t.$$

**Express** 

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$$

in terms of  $\cosh t$ . (5 marks)

(c) (i) The arc of C from t = 0 to t = 1 is rotated through  $2\pi$  radians about the x-axis.

Show that S, the area of the curved surface generated, is given by

$$S = 2\pi\sqrt{2} \int_0^1 (\cosh t - t) \cosh t \, dt. \tag{1 mark}$$

(ii) Hence find S, leaving your answer in terms of hyperbolic functions. (4 marks)

| Q        | Solution                                                                                                     | Marks      | Total | Comments                                                      |
|----------|--------------------------------------------------------------------------------------------------------------|------------|-------|---------------------------------------------------------------|
| 4 (a)(i) | $\int \cosh^2 x  \mathrm{d}x = \int \frac{1}{2} \left( 1 + \cosh 2x \right) \mathrm{d}x$                     | M1A1       |       |                                                               |
|          | $=\frac{x}{2} + \frac{\sinh 2x}{4} (+c)$                                                                     | A1F        | 3     |                                                               |
| (ii)     | $\int x \cosh x  dx = x \sinh x - \int \sinh x  dx$                                                          | M1A1       |       | if $\int \sinh x$ is given as $-\cosh x$ , penalise           |
|          | $= x \sinh x - \cosh x (+c)$                                                                                 | A1F        | 3     | once only if consistent                                       |
| (b)      | $\dot{x} = \sinh t + 1,  \dot{y} = \sinh t - 1$                                                              | <b>B</b> 1 |       |                                                               |
|          | $\dot{x}^2 + \dot{y}^2 = (\sinh t + 1)^2 + (\sinh t - 1)^2$                                                  | <b>M</b> 1 |       |                                                               |
|          | $= \sinh^2 t + 2\sinh t + 1 + \sinh^2 t - 2\sinh t + 1$                                                      | A1F        |       |                                                               |
|          | Use of $\cosh^2 t - \sinh^2 t = 1$                                                                           | m1         |       |                                                               |
|          | $=2\cosh^2 t$                                                                                                | A1F        | 5     |                                                               |
| (c)(i)   | $S = \int_0^1 2\pi y (\dot{x}^2 + \dot{y}^2)^{\frac{1}{2}} dt$                                               |            |       |                                                               |
|          | $=2\pi\sqrt{2}\int_0^1(\cosh t-t)(\cosh t)\mathrm{d}t$                                                       | B1         | 1     |                                                               |
| (ii)     | $=2\sqrt{2}\pi\bigg[\frac{t}{2}+\frac{\sinh 2t}{4}-t\sinh t+\cosh t\bigg]_0^1$                               | M1A1       |       |                                                               |
|          | $= 2\sqrt{2}\pi \left\{ \left[ \frac{1}{2} + \frac{1}{4}\sinh 2 - \sinh 1 + \cosh 1 \right] - (+1) \right\}$ |            |       |                                                               |
|          | $=2\sqrt{2}\pi\left[\frac{1}{4}\sinh 2-\sinh 1+\cosh 1-\frac{1}{2}\right]$                                   | A2,1,0F    | 4     | must use $\cosh 0 = 1$ and $\sinh 0 = 0$ for A2, otherwise A1 |
|          | Total                                                                                                        |            | 16    |                                                               |