FP2 - Revolutions

Challenge 1

The diagram shows a sketch of the curve $y = 2\sqrt{x}$.

The arc of the curve between x = 0 and x = 3 is rotated through 2π radians about the x – axis.

(a) Show that S, the surface area generated, is given by

$$S = 4\pi \int_0^3 \sqrt{1+x} \, \mathrm{d}x \,. \tag{5 marks}$$

(b) Hence evaluate S. (3 marks)

Challenge 2

A curve has equation

$$y = \sinh^2 x$$
.

(a) Show that

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \cosh^2 2x. \tag{2 marks}$$

The arc of the curve between x = 0 and x = 1 is rotated through 2π radians about the x-axis.

(b) (i) Show that S, the area of the curved surface generated, is given by

$$S = \pi \int_0^1 (\cosh 2x - 1) \cosh 2x \, dx. \qquad (3 \text{ marks})$$

(ii) Hence find S, giving an exact answer in terms of hyperbolic functions. (4 marks)

Challenge 3

A curve C has equation

$$y = \ln(1 - x^2), \quad 0 \le x < 1.$$

$$1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = \left(\frac{1 + x^2}{1 - x^2}\right)^2.$$

Use the result

$$\frac{1+x^2}{1-x^2} = \frac{2}{1-x^2} - 1$$

to show that the length of the arc of C between the points where x=0 and x=p is

$$2 \tanh^{-1} p - p. \tag{4 marks}$$

Final Challenge

(a) Evaluate:

(i)
$$\int \cosh^2 x \, dx$$
; (3 marks)

(ii)
$$\int x \cosh x \, dx$$
. (3 marks)

(b) A curve C is given parametrically by the equations

$$x = \cosh t + t$$
, $y = \cosh t - t$.

Express

$$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2$$

in terms of $\cosh t$. (5 marks)

(c) (i) The arc of C from t = 0 to t = 1 is rotated through 2π radians about the x-axis. Show that S, the area of the curved surface generated, is given by

$$S = 2\pi\sqrt{2} \int_0^1 (\cosh t - t) \cosh t \, dt. \tag{1 mark}$$

(ii) Hence find S, leaving your answer in terms of hyperbolic functions. (4 marks)

