Sequences and Series

The first four terms of a geometric sequence are

10, 9, 8.1, 7.29.

- (a) Show that the common ratio of the sequence is 0.9. (1 mark)
- (b) Find the *n*th term. (2 marks)
- (c) Show that the sum of the first 25 terms is approximately 92.8. (2 marks)
- (d) Find the sum to infinity. (2 marks)

Q	Solution	Marks	Total	Comments
1 (a)	$10r = 9 \Longrightarrow r = 0.9$	B1	1	Convincingly shown (AG)
(b)	Formula for <i>n</i> th term of GP stated	M1		Or used
	$u_n = 10(0.9)^{n-1}$	A1	2	OE
(c)	Formula for sum to <i>n</i> terms stated	M1		Or used; M0 for list of terms
	$S_{25} = \frac{10(1 - 0.9^{25})}{1 - 0.9} \approx 92.8(21)$	A1	2	AG (92.8): allow just 3SF if no error
(d)	Formula for sum to infinity stated	M1		Or used
	$S_{\infty} = 100$	A1	2	
	Total		7	

The first three terms of a geometric series are (k + 4), k and (2k - 15) respectively, where k is a positive constant.

(a) Show that
$$k^2 - 7k - 60 = 0$$
. (4)

(b) Hence show that k = 12. (2)

(c) Find the common ratio of this series. (2)

(d) Find the sum to infinity of this series. (2)

Question Number	Chama		Marks	
9 (a)	Initial step: Two of: $a = k + 4$, $ar = k$, $ar^2 = 2k - 15$ Or one of: $r = \frac{k}{k+4}$, $r = \frac{2k-15}{k}$, $r^2 = \frac{2k-15}{k+4}$, Or $k = \sqrt{(k+4)(2k-15)}$ or even $k^3 = (k+4)k(2k-15)$ $k^2 = (k+4)(2k-15)$, so $k^2 = 2k^2 + 8k - 15k - 60$ Proceed to $k^2 - 7k - 60 = 0$	(*)	M1 M1, A1 A1	(4)
(b)	(k-12)(k+5) = 0 $k = 12$	(*)	M1 A1	(2)
(c)	Common ratio: $\frac{k}{k+4}$ or $\frac{2k-15}{k} = \frac{12}{16} \left(= \frac{3}{4} \text{ or } 0.75 \right)$		M1 A1	(2)
(d)	$\frac{a}{1-r} = \frac{16}{\binom{1}{4}} = 64$		M1 A1	(2) [10]

The first term of an arithmetic series is 7. The tenth term is 43.

(a) Find the common difference.

(2 marks)

(b) Find the sum of the first fifty terms of the series.

(3 marks)

(c) The kth term has a value greater than 1000.

(i) Show that
$$4k > 997$$
.

(2 marks)

(ii) Find the least possible value of k.

(1 mark)

Question	Solution	Marks	Total	Comments
Number				
and part				
1(a)	7+9d	M1		Condone $7+10d$, or attempt to consider
	7+9d = 43 $d = 4$	A1	2	$\frac{43-7}{9}$ {or 10}
(b)	$S_n = \frac{1}{2}n(2a + (n-1)d)$ formula attempted	M1		Condone one slip using <i>n</i> or 50
	= 25 (14+196)	A 1√		ft their 49 d (eg 25×190.4 = 4760)
	= 5250	A1	3	
(c)(i)	7 + (k-1)d > 1000	M1		Condone = instead of >
	$\Rightarrow 4k > 997$	A1	2	ag be convinced
(ii)	(Since k is integer) $k = 250$	B1	1	
	Total		8	

A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k,$$

 $a_{n+1} = 2a_n - 7, \quad n \geqslant 1,$

where k is a constant.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 4k - 21$.

(2)

Given that $\sum_{r=1}^{4} a_r = 43$,

(c) find the value of k.

(4)

_	stion nber	Scheme		Marks	
Q7		$(a_2 =)2k-7$ $(a_3 =)2(2k-7)-7 \text{ or } 4k-14-7,= 4k-21$ $(a_4 =)2(4k-21)-7 = (8k-49)$	(*)	B1 (1) M1, A1cso (2 M1	
		$\sum_{r=1}^{4} a_r = k + "(2k - 7)" + (4k - 21) + "(8k - 49)"$ $k + (2k - 7) + (4k - 21) + (8k - 49) = 15k - 77 = 43$	<i>k</i> = 8	M1 A1 (4	