## D2 Simplex algorithm Challenge

## Challenge 1

A linear programming problem in x and y is to be solved. Part of the initial tableau is given below.

| X  | У | r | s | t |    |
|----|---|---|---|---|----|
| 4  | 3 | 1 | 0 | 0 | 33 |
| -1 | 1 | 0 | 1 | 0 | 4  |
| 2  | 5 | 0 | 0 | 1 | 27 |

(a) In addition to  $x \ge 0$  and  $y \ge 0$ , write down the **three** inequalities in this problem.

(2 marks)

- (b) (i) The objective function P = 2x + 2y is to be maximised. Solve this linear programming problem using the simplex algorithm, by initially using a value in the x column as the pivot. (You do **not** require more than two iterations.) (7 marks)
  - (ii) State your final values of P, x and y. (2 marks)



## Challenge 2

(a) Display the following linear programming problem in a Simplex tableau.

Maximise 
$$P = 4x + 5y + 3z$$
  
subject to 
$$8x + 5y + 2z \le 3$$
$$4x + 6y + 9z \le 2$$
  
and 
$$x \ge 0, y \ge 0, z \ge 0$$
 (2 marks)

(b) Solve the problem using the Simplex algorithm, giving your answers as exact fractions. (9 marks)





## Final Challenge

The simplex method has been applied to a linear programming problem concerning an objective function P in two variables, x and y. The initial tableau  $T_0$  and the tableau  $T_1$ , after one iteration of the simplex method, are given by:

|       | P | x  | y  | S | t | u |    |
|-------|---|----|----|---|---|---|----|
|       | 1 | -1 | -2 | 0 | 0 | 0 | 0  |
| $T_0$ | 0 | -1 | 1  | 1 | 0 | 0 | 5  |
|       | 0 | 1  | 1  | 0 | 1 | 0 | 15 |
|       | 0 | 1  | -3 | 0 | 0 | 1 | 3  |

| 53 | u  | t | S | y  | x | P |
|----|----|---|---|----|---|---|
| 3  | 1  | 0 | 0 | -5 | 0 | 1 |
| 8  | 1  | 0 | 1 | -2 | 0 | 0 |
| 12 | -1 | 1 | 0 | 4  | 0 | 0 |
| 3  | 1  | 0 | 0 | -3 | 1 | 0 |

- (a) (i) Apply one further iteration of the simplex method to give a new tableau  $T_2$ . (5 marks)
  - (ii) Explain how you know that the maximum value of P has not yet been reached.

(1 mark)

(b) A further iteration of the simplex method leads to tableau T<sub>3</sub>.

|            | P | x | y | 5              | t              | ш |    |
|------------|---|---|---|----------------|----------------|---|----|
|            | 1 | 0 | 0 | 1/2            | $1\frac{1}{2}$ | 0 | 25 |
| $\Gamma_3$ | 0 | 0 | 0 | 2              | 1              | 1 | 28 |
|            | 0 | 0 | 1 | 1/2            | $\frac{1}{2}$  | 0 | 10 |
|            | 0 | 1 | 0 | $-\frac{1}{2}$ | 1 2            | 0 | 5  |

- State the maximum value of P and the values of x and y for which this maximum is reached.
  (2 marks)
- (ii) The figure shows a sketch of the feasible region of the linear programming problem.



For each of the tableaux  $T_0$ ,  $T_1$ ,  $T_2$  and  $T_3$  state which of the points O, A, B, C or D it represents.

(iii) Explain how the original linear programming problem could have been solved by the simplex method with fewer than 3 iterations. (2 marks)

