(a) Show that

$$\frac{1}{r!} - \frac{1}{(r+1)!} \equiv \frac{r}{(r+1)!}$$
 (2 marks)

(b) Hence find

$$\sum_{r=1}^{n} \frac{r}{(r+1)!}.$$
 (3 marks)

| Q     | Solution                                                                                                  | Marks      | Total | Comments |
|-------|-----------------------------------------------------------------------------------------------------------|------------|-------|----------|
| 5 (a) | Use of $(r+1)! = r! \times (r+1)$                                                                         | M1         |       |          |
|       | Result                                                                                                    | <b>A</b> 1 | 2     |          |
| (b)   | $r = 1 	 \frac{1}{2!} = \frac{1}{1!} - \frac{1}{2!}$ $r = 2 	 \frac{2}{3!} = \frac{1}{2!} - \frac{1}{3!}$ |            |       |          |
|       | $r = 2 \qquad \frac{2}{3!} = \frac{1}{2!} - \frac{1}{3!}$                                                 |            |       |          |
|       | $r = n$ $\frac{n}{(n+1)!} = \frac{1}{n!} - \frac{1}{(n+1)!}$                                              |            |       |          |
|       | three lines set out (including the last row)                                                              | B1         |       |          |
|       | Cancellations clearly shown                                                                               | M1         |       |          |
|       | $Sum = 1 - \frac{1}{(n+1)!}$                                                                              | A1         | 3     |          |
|       | Total                                                                                                     |            | 5     |          |

Prove by induction that, for all integers  $n \ge 1$ ,

$$\sum_{r=1}^{n} \frac{1}{(3r-2)(3r+1)} = \frac{n}{3n+1}.$$
 (8 marks)

| 6 | Assume true for $n = k$                                                                                           |                |   |                                        |
|---|-------------------------------------------------------------------------------------------------------------------|----------------|---|----------------------------------------|
|   | Then $\sum_{r=1}^{k+1} \frac{1}{(3r-2)(3r+1)} = \frac{k}{3k+1} + \frac{1}{(3k+1)(3k+4)}$                          | M1A1           |   |                                        |
|   | $=\frac{k(3k+4)+1}{(3k+1)(3k+4)}$                                                                                 | <b>A</b> 1√    |   |                                        |
|   | $=\frac{(3k+1)(k+1)}{(3k+1)(3k+4)}$                                                                               | M1A1√          |   | Factorisation of numerator             |
|   | $= \frac{k+1}{3(k+1)+1} \text{ or } \frac{k+1}{3k+4}$                                                             | A1             |   |                                        |
|   | $\therefore$ if result is true for $n = k$ , it is true for $n = k + 1$                                           |                |   |                                        |
|   | but $n = 1$ , $LHS = \frac{1}{1 \times 4} = \frac{1}{4} = RHS$                                                    | B1             |   |                                        |
|   | $\therefore$ true for $n \ge 1$ by induction                                                                      | E1             | 8 | E1 is for an acceptable formal outline |
|   | In Q6 using the difference method Partial fractions Writing out series in detail (including 1st 2 and last terms) | (M1A1)<br>(A1) |   |                                        |
|   | Answer                                                                                                            | (A1)           |   | CAO                                    |
|   | Total $\frac{4}{8}$                                                                                               |                |   |                                        |
|   | Total                                                                                                             |                | 8 |                                        |

(a) Show that 
$$\frac{2r-1}{(r-1)r} - \frac{2r+1}{r(r+1)} \equiv \frac{2}{(r-1)(r+1)}$$
. (3 marks)

(b) Hence, using the method of differences, prove that

$$\sum_{r=2}^{n} \frac{2}{(r-1)(r+1)} = \frac{3}{2} - \frac{2n+1}{n(n+1)}$$
 (3 marks)

(c) Deduce the sum of the infinite series

$$\frac{1}{1\times 3} + \frac{1}{2\times 4} + \frac{1}{3\times 5} + \dots + \frac{1}{(n-1)(n+1)} + \dots$$
 (2 marks)

| 9(a) | $\frac{(2r-1)(r+1)-(2r+1)(r-1)}{r(r-1)(r+1)}$                                                                                   | M1         |   | Common denominator attempt              |
|------|---------------------------------------------------------------------------------------------------------------------------------|------------|---|-----------------------------------------|
|      | $=\frac{2r}{r(r-1)(r+1)}$                                                                                                       | m1         |   | Multiplying out brackets and cancelling |
|      | $=\frac{2}{(r-1)(r+1)}$                                                                                                         | <b>A</b> 1 | 3 | ag                                      |
| (b)  | $= \left(\frac{3}{1 \times 2} - \frac{5}{2 \times 3}\right) + \left(\frac{5}{2 \times 3} - \frac{7}{3 \times 4}\right) + \dots$ | M1         |   | Putting $r = 2,3,$                      |
|      | $\frac{2n-1}{(n-1)n} - \frac{2n+1}{n(n+1)}$                                                                                     | m1         |   | nth term and terms cancelling           |
|      | sum $=\frac{3}{2} - \frac{(2n+1)}{n(n+1)}$                                                                                      | <b>A</b> 1 | 3 | ag Be convinced – all correct           |
| (c)  | $\frac{(2n+1)}{n(n+1)} \to 0  \text{as } n \to \infty$                                                                          | M1         |   |                                         |
|      | Sum of infinite series = $\frac{3}{4}$                                                                                          | <b>A</b> 1 | 2 |                                         |
|      | Total                                                                                                                           |            | 8 |                                         |

The function f is given by

$$f(n) = n^3 + (n+1)^3 + (n+2)^3$$
.

(a) Simplify, as far as possible, f(n + 1) - f(n).

(4 marks)

(b) Prove by induction that the sum of the cubes of three consecutive positive integers is divisible by 9. (5 marks)

| Q     | Solution                                                                          | Marks      | Total | Comments                            |
|-------|-----------------------------------------------------------------------------------|------------|-------|-------------------------------------|
| 3 (a) | $f(n+1)-f(n) = (n+3)^3 - n^3$                                                     | M1A1       |       | or attempt at $f(n+1)-f(n)$ M1      |
|       | $= n^3 + 3n^2 \times 3 + 3n \times 9 + 27 - n^3$                                  | A1         |       | $3n^3 + 18n^2 + 42n + 36 \qquad A1$ |
|       | $=9n^2+27n+27$                                                                    | A1F        | 4     | $3n^3 + 9n^2 + 15n + 9 	 A1$        |
| (b)   | Assume result true for $n = k$<br>ie $f(k) = M(9)$<br>Then $f(k+1) = f(k) + M(9)$ |            |       | result A1                           |
|       | = M(9) + M(9) = M(9)<br>But $f(1) = 1^3 + 2^3 + 3^3 = 36 = M(9)$                  | M1A1<br>A1 |       | Must be clear for this A1           |
|       | $P_1$ true and $P_k \Rightarrow P_{k+1}$<br>$\therefore$ true by induction        | B1<br>E1   | 5     | Only if correct or almost correct   |
|       | Total                                                                             |            | 9     |                                     |