7 The equations

$$x+y-2z = 2$$
$$3x-y+6z = 2$$
$$6x+5y-9z = k$$

represent three planes, where k is a constant.

(a) Show that this system of equations does not have a unique solution. (2 marks)

(b) Prove that this system is consistent provided k = 11. (4 marks)

(c) (i) Find the solution to this system in the case when k = 11. (4 marks)

(ii) Interpret this solution with reference to the three planes. (1 mark)

	Total		11	
			out of	N.B. Since candidates can get several results from the same piece of working (on the augmented matrix), assign marks for whichever section would credit them most favourably, irrespective of which section they believe themselves to be answering.
	(ii) Line of intersection	B 1	1	
	And $x = 2 + 2z - y = 1 - \lambda$	A1	4	
	$\Rightarrow y = 3\lambda + 1$	Al		
(c)	(i) $y-3z=1$ from R_3 (e.g.) Let $z=\lambda$	B1 M1		- consistency runter than vice versa
	$\Rightarrow k = 11$	Al	4	ag N.B. Give 3 + A0 for showing that $k = 11$ ⇒ consistency rather than vice versa
	Consistency provided $k - 12 = \frac{1}{4}(-4)$		79 4 77	2010/2010
		A1		R_3
	$ \begin{bmatrix} 1 & 1 & -2 & 2 \\ 0 & -4 & 12 & -4 \\ 0 & -1 & 3 & k-12 \end{bmatrix} $	A1		R_2
	1 1 -2 2	(IVII)		
	$\begin{bmatrix} 5 & -1 & 6 & 2 \\ 6 & 5 & -9 & k \end{bmatrix} \xrightarrow{\longrightarrow}$	M1		
(b)	$\begin{bmatrix} 1 & 1 & -2 & 2 \\ 3 & -1 & 6 & 2 \\ 6 & 5 & -9 & k \end{bmatrix} \rightarrow$			
	53.00			work on augmented matrix (e.g.) or by $21R_1 + R_2 = 4R_3$, etc.
	= 0	A 1	2	N.B. Candidates may conclude this after
	$\begin{vmatrix} 1 & 1 & -2 \\ 3 & -1 & 6 \\ 6 & 5 & -9 \end{vmatrix} = 9 + 36 - 30 - 12 - 30 + 27$	M1		
7 (a)	1 1 -2			
	(ii) Interpret this solution with refe	ichee te	the thi	ee planes. (1 mark)

5 Three simultaneous equations are

$$x-3y+2z = 3$$

$$x+y+az = b$$

$$x-2y+z = 2,$$

where a and b are constants.

- (a) In the case where $a \neq -2$, solve the equations in terms of a and b. (7 marks)
- (b) Give, with reasons, a geometrical interpretation of the planes represented by these three equations in the case where a = -2 and $b \ne -1$. (3 marks)

	Т	otal	10	
	So a prism	B1	3	allow diagram
	Planes not parallel	B1		
(I	No solution	B1		
	$x = \frac{b+1}{a+2}, y = \frac{b-a-1}{a+2}$	M1M1A1	7	M2 for complete solution [single fraction for A1s]
	$z = \frac{b+1}{a+2}$	A1		M1 for elimination of two variables
	(a+2)z = b+1	M1		
	4y + $(a-2)z = b-3$ y-z = -1 (a+2)z = b+1	M1A1		M1 for elimination of one variable
5 (2	4y + (a-2)z = b-3			

6 A matrix M is defined by

$$\mathbf{M} = \left[\begin{array}{rrr} 3 & 1 & 8 \\ 2 & -1 & 5 \\ 1 & 2 & a \end{array} \right].$$

- (a) Find det \mathbf{M} in terms of a. (3 marks)
- (b) Find the value of a for which the matrix \mathbf{M} is singular. (1 mark)
- (c) (i) In the case a = 2, find \mathbf{M}^{-1} . (6 marks)
 - (ii) Hence, or otherwise, solve

$$3x + y + 8z = 3$$

 $2x - y + 5z = 0$
 $x + 2y + 2z = 2$. (4 marks)

	J	c + 2y + 2z = 2	2.	(4 marks
6 (a)	3(-a-10)-(2a-5)+8(4+1)	M1A1		M attempt; A correct unsimplified
	15 – 5a	Al	3	CAO
(b)	a = 3	B1√	1	$ft \triangle = 0$
(c)(i)	[-12 -1 5]	M1		Finding 2×2 determinants (co-factors)
V-0 20000000	$\begin{bmatrix} -12 & -1 & 5 \\ -14 & -2 & 5 \\ 13 & -1 & -5 \end{bmatrix}$	A1		Any one correct row/column
	13 -1 -5			
	Det = 5	B1		ft (a) wrong or correct having started
	Fire to the	MI		again
	$ \frac{1}{5} \begin{bmatrix} -12 & 14 & 13 \\ 1 & -2 & 1 \\ 5 & -5 & -5 \end{bmatrix} $	M1 M1		signs Transpage
	5 5 5 5	Al	6	Transpose CAO
		1700000	U	CAO
(ii)	1 -12 14 13 3	M2		
	$ \frac{1}{5} \begin{bmatrix} -12 & 14 & 13 \\ 1 & -2 & 1 \\ 5 & -5 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix} $			
- 1				
	-2	A1√A1	4	A1 any one correct (ft) A1 all CAO
	$\begin{bmatrix} -2\\1\\1\end{bmatrix}$			AT all CAO
	[1]			
	Alternative 1 to (c)(ii)	200		
	$3 \text{ eqns} \rightarrow 2 \rightarrow 1 \rightarrow \text{Answers}$	(M1)		$3 \text{ eqns } \rightarrow 2$
		(MI) (AI)		$2 \text{ eqns } \rightarrow 1$
		(A1) (A1)		any one correct
		(AI)		all CAO
	Alternative 2 to (c)(ii)			
	Cramer's Rule $x = \frac{\Delta x}{\Delta}$ etc	(MI)		
	x = -2, $y = 1$, $z = 1$	(A1A1A1)		
	Alternative 3 to (c)(ii)			
	Gaussian Elimination	(MIAIAI) (AI)		
	Total		14	

3 Two planes are represented by the equations

$$x + y + z = 3$$
,
 $5x + y + 3z = 29$.

(a) Find the equations of the line of intersection of the planes, giving your answer in the form

$$\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n}.$$

(6 marks)

(b) Show that this line also lies in the plane with equation

$$4x - 2y + z = 33$$
.

(3 marks)

3	(a)	Elimination of 1 variable	M 1		
		Elimination of another	M1A1		e.g. $\begin{cases} x - y = 10 \\ 2x + z = 13 \end{cases}$
		$x = y + 10 = \frac{z - 13}{-2}$	M1A1A1	6	M1 for relationship in required form
	(b)	e.g. Substitute $x = \lambda$ $y = \lambda - 10$ $z = 13 - 2\lambda$	M1		
		$4\lambda - 2(\lambda - 10) + 13 - 2\lambda = 33$	M1A1	3	AG
		Total		9	