7 (a) Find
$$\begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$
. (2 marks)

(b) The points P and Q lie on the lines

$$\mathbf{r} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + s \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$$
 and $\mathbf{r} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, respectively.

- (i) Express the vector \overrightarrow{PQ} in terms of s and t. (2 marks)
- (ii) Hence find the scalar λ for which

$$\overrightarrow{PQ} = \lambda \begin{bmatrix} 2\\3\\-1 \end{bmatrix}.$$
 (4 marks)

(2 marks)

- (c) Show that the vector \overrightarrow{PQ} with the value of λ found in part (b)(ii) is perpendicular to both lines. (2 marks)
- (d) Find the shortest possible distance *PQ*.

Q	Solution	Marks	Total	Comments
7 (a)	$\begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix}$	M1A1	2	
(b)(i)	$\overrightarrow{PQ} = \begin{bmatrix} -1\\3\\2 \end{bmatrix} + t \begin{bmatrix} 1\\0\\2 \end{bmatrix} - s \begin{bmatrix} 0\\1\\3 \end{bmatrix}$	M1A1	2	
(ii)	$= \lambda \begin{bmatrix} 2\\3\\-1 \end{bmatrix}$	M1		
	Scalar product with $\begin{bmatrix} 2\\3\\-1 \end{bmatrix}$	M1		or equate components of vectors
	$(-2+9-2)=14\lambda$ $\lambda = \frac{5}{14}$ or equation in λ	M1A1	4	
(c)	$\begin{bmatrix} 2\\3\\-1 \end{bmatrix} \text{is} \perp \text{to} \begin{bmatrix} 0\\1\\3 \end{bmatrix}$	B1		
	and to $\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$	B1	2	
(d)	$\frac{5}{14}\sqrt{14}$	M1A1F	2	
	Total		12	

8 The line
$$l_1$$
 has equation
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} + t \begin{bmatrix} 4 \\ 4 \\ 2 \end{bmatrix}.$$

The line
$$l_2$$
 has equation
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 8 \\ -1 \\ 2 \end{bmatrix} + s \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}.$$

- (a) Show that the lines l_1 and l_2 intersect and find the coordinates of their point of intersection. (5 marks)
- (b) (i) Show that the vector $\begin{bmatrix} 1 \\ 11 \\ -16 \end{bmatrix}$ is perpendicular to both l_1 and l_2 . (2 marks)
 - (ii) Find the Cartesian equation of the plane containing the lines l_1 and l_2 . (3 marks)

8 (a)	3 + 4t = 8 - s	M1		Set up and attempt to solve
				1
	-2 + 4t = -1 + 3s			
	t=1 $s=1$	m1A1		
	$1+3\times1 = 2+1\times2 = 4$	A 1		Check third equation
	(x, y, z) = (7, 2, 4)	B1ft	5	ft on consistent use of s or t
(b)(i)	$4 \times 1 + 4 \times 11 + 3 \times -16 = 0$	M1		Use scalar product with a
	$-1 \times 1 + 3 \times 11 + 2 \times -16 = 0$	A1	2	direction Both equal zero
		AI	2	2001 04001 2010
(ii)	Plane has equation $x+11y-16z = d$	M1		Use of normal vector
	(3, -2, 1) is on the plane			
	,	M1		OE, use of a point on the plane
	$d = 3 + 11 \times -2 - 16 \times 1 = -35$			or $\mathbf{n} \cdot \mathbf{r} = \mathbf{n} \cdot \mathbf{d}$
	x+11y-16z=-35	A1	3	
	Alternative to part (b)(ii)			
	from vector equation			
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix} + \mu \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$			
	$\begin{vmatrix} y \\ z \end{vmatrix} = \begin{vmatrix} -2 \\ 1 \end{vmatrix} + \lambda \begin{vmatrix} 4 \\ 2 \end{vmatrix} + \mu \begin{vmatrix} 3 \\ 2 \end{vmatrix}$			
	$x = 3 + 4 \lambda - \mu$	(M1)		Form simultaneous equations
	$y = -2 + 4\lambda + 3\mu$	(m1)		Complete elimination of λ , μ
	$z = 1 + 3\lambda + 2\mu$	(A1)		
	Total		10	

4 The planes Π_1 and Π_2 have equations

$$x + 2y - z = 1$$

and

$$x + 3y + z = 6$$

respectively.

- (a) Verify that the point P, with coordinates (1, 1, 2), lies on both planes. (1 mark)
- (b) Find the equation of l, the line of intersection of Π_1 and Π_2 , giving your answer in the form $\frac{x-\alpha}{p} = \frac{y-\beta}{q} = \frac{z-\gamma}{r}$. (5 marks)
- (c) Find the acute angle between the line l and the line through P which is parallel to the y-axis. Give your answer to the nearest 0.1 of a degree. (3 marks)

	y willow of the your willower to the in			, , ,
4 (a)	1+2-2=1, $1+3+2=6$	B1	1	
(b)	$\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$	M1A1		Alternative method for 4(b) Elimination of one letter e.g. $y = -2z + 5$ M1A1
	$ = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} $	A1F		Elimination of second letter e.g. $y = \frac{7 - 2x}{5}$ A1
	Equation of line is $\frac{x-1}{5} = \frac{y-1}{-2} = \frac{z-2}{1}$	M1A1F	5	Combining the results $-2z + 5 = y = \frac{7 - 2x}{5}$ M1 Rearranging $\frac{z - \frac{5}{2}}{1} = \frac{y}{-2} = \frac{x - \frac{7}{2}}{5}$ A1
(c)	$\cos \theta = \frac{\pm (0,1,0) \cdot (5,-2,1)}{\sqrt{5^2 + (-2)^2 + 1^2}}$	M1A1F		ft incorrect $(5, -2, 1)$
	$\theta = 68.6^{\circ}$	A1F	3	
	Total		9	

5 A line l has equation

$$(\mathbf{r} - \mathbf{a}) \times \mathbf{b} = \mathbf{0},$$

where

$$\mathbf{a} = \begin{bmatrix} -4 \\ 10 \\ -4 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}.$$

(a) (i) Show that the coordinates of any point on l may be written as

$$(-4+2\lambda, 10-3\lambda, -4+\lambda),$$

where λ is a parameter.

(3 marks)

- (ii) Hence find the coordinates of the point N on l such that ON, where O is the origin, is perpendicular to l. (4 marks)
- (b) Find the equation of the line through N which is perpendicular to both l and ON, giving your answer in the form $(\mathbf{r} \mathbf{c}) \times \mathbf{d} = \mathbf{0}$. (4 marks)

Q	Solution	Marks	Total	Comments
5 (a)(i)	The direction of $\mathbf{r} - \mathbf{a}$ is parallel to \mathbf{b}	M1		
	$\mathbf{r} - \mathbf{a} = \lambda \mathbf{b}$	A1		
	$\mathbf{r} = \begin{bmatrix} -4\\10\\-4 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-3\\1 \end{bmatrix} = \begin{bmatrix} -4+2\lambda\\10-3\lambda\\-4+\lambda \end{bmatrix}$	A1	3	
(ii)	$\begin{bmatrix} -4+2\lambda \\ 10-3\lambda \\ -4+\lambda \end{bmatrix} \cdot \begin{bmatrix} 2\\ -3\\ 1 \end{bmatrix}$	M1		
	$-8+4\lambda-30+9\lambda-4+\lambda=0$	A1		
	$\lambda = 3$	A1F		
	N is $(2, 1, -1)$	A1F	4	
(b)	$\begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} \times \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ -4 \\ -8 \end{bmatrix}$	M1A1F		$\begin{bmatrix} -4\\10\\-4 \end{bmatrix} \times \begin{bmatrix} 2\\-3\\1 \end{bmatrix}$ also earns M1
	$\mathbf{c} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \ \mathbf{d} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \text{ or any multiple}$	A1F A1F	4	
	Total		11	